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A new numeral, a modification of one used by Wallis and Rie-
mann, represents the alternatives and provides a means for demon-
strating their effectiveness. The new idea and symbol mesh well
with John A. Wheeler’s and Roger Penrose’s notation for infinite
arrays. Other zeros (e.g., placeholder, digit, ordinal, exponent)
and their symbol “0” need not change.

Consequences of applying the usual rules of arithmetic to the
new zeros are explored. A substitute for the Dirac Delta function
appears in basic arithmetic. The new zeros are not constrained by
Hankel’s Theorem from extending the Real and Complex number
systems. An n-real-dimensional space is defined operationally. The
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Special Relativity to show how the new zero may provide a different
view of phenomena.
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1. What If?

In mathematics the art of properly stating a question is
more important than the solving of it.

Georg Cantor

I have no data yet. It is a capital mistake to theorize
before one has data. Insensibly one begins to twist facts
to suit theories, instead of theories to suit facts.

Sherlock Holmes

Has All —
a codicil?

Emily Dickinson

What if there were a different zero? What would stay the same and
what would change in mathematics? Is this variant zero a number that
will “serve as a means of apprehending more easily and more sharply
the difference of things”0 than the current zero?

I submit these questions in the spirit of Charles Sanders Peirce’s
statement regarding the importance of mathematics for discovery. He
wrote, the “only aim” of

the Conditional or Hypothetical Science of Pure Mathe-
matics . . . is to discover not how things are, but how they
might be supposed to be, if not in our universe, then in
some other.1

My response to these questions travels four main avenues of thought.
They are the hypotheses of nothing used in mathematics, the nature
and meaning of zero, examples of different number2 zeros, and the use
of these new zeros in physics. The third avenue, presumably of central
interest for many, may be read independently of the others.

0Dedekind, Richard, Essays on the Theory of Numbers, p. 14, translator, W.
W. Beman. They can be found at Project Gutenberg’s website, http://www.

gutenberg.org/files/21016/21016-pdf.pdf The Essays are also collected in
God Created the Integers: The Mathematical Breakthroughs That Changed History,
edited by Stephen W. Hawking.

1Quoted in Apel, Karl-Otto, Charles S. Peirce : From Pragmatism to Pragmati-

cism, pp. 119-20, University of Amherst Press, 1981. Translation of Der Denkweg

von Charles S. Peirce: Eine Einführung in den amerikanischen Pragmatismus,
1967, 1970 by Suhrkamp Verlag, Frankfurt am Main.

2Only an alternative to the cardinal is offered. Other zeros, e.g., digit, place-
holder, exponent, and their familiar oval symbol, remain unchanged. The ordinal
zero, although it may be dispensed with, need not change as evidenced by the page
number on the title page and the first footnote of this paper.
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The third avenue is the heart and genesis of the paper. Beginning
in Section 5, alternate number zeros accompanied by a new numeral
enlivens our discovery capacity. I call them the potential 3 zeros. Two
sets of rules for specific versions of the potential zeros are laid out: the
first set for basic arithmetic in Section 6 and the second for arithmetic
on the Real number line in Sections 8.1 and 8.2.

The first two avenues are an after the fact effort to orient and con-
textualize the new zeros in a landscape of familiar ideas. They can be
read independently of, and are not necessary for, the math and physics
sections. The two avenues do present the reader with an opportunity
to compare and evaluate the differing meanings at the core of both
new and established zeros in a fresh light and on a slightly leveled
playing field. I hope an exposition of these two avenues will give some
respectability to at least the idea of a different zero regardless of the
merits of the particular candidates offered here.

Section 2 looks at Bernhard Riemann’s work on alternative hypothe-
ses in geometry and finds that his opening remarks apply equally well
to arithmetic. Section 3 identifies a commonly experienced hypothe-
sis of nothing exemplified by the placeholder zero. This placeholder
hypothesis is testable and points at a unification of something and
nothing.

Sections 4 and 7 on the nature and meaning of zero start with
Richard Dedekind’s reluctance to include the empty set in his axioms.
Using the omission as a framework, I present substitutes arising from
the placeholder hypothesis for the empty set and for the zero axiom
following precedents from Gottlob Frege and Giuseppe Peano.

The last avenue is perhaps the most important. Dedekind clearly
states the importance of number for physics.

It is only through the purely logical process of building up
the science of numbers. . . that we are prepared accurately
to investigate our notions of space and time by bringing
them into relation with this number-domain created in
our mind.4

Might zeros arising from division offer deeper insights than a zero de-
rived from subtraction and first used for finance and accounting? Are
zero numbers with a unified view of something and nothing “in our
universe [or] in some other?”

3I personally preferred possibility zeros and will sometimes refer to them this
way, but a quick survey among friends revealed a near unanimous preference for
the term potential. Upon reflection, I came to agree.

4Dedekind, p. 14.
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2. Riemann and the Plan of the Investigation

I mean to imply that I consider the number-concept en-
tirely independent of the notions or intuitions of space
and time, that I consider it an immediate result from the
laws of thought.

Richard Dedekind

We hypostasize these laws of things into laws of thought.

Sidney Hook

For nothing is harder than to distinguish the real things
of sense

From those doubtful versions of them that the mind read-
ily supplies.

Lucretius

While playing around with zero, some awareness arose concerning the
foundational issues involved in offering an alternative5 to one of the ax-
ioms comprising standard arithmetic. I naturally turned to Bernhard
Riemann’s paper On the Hypotheses which lie at the Bases of Geom-
etry.6 This work lays out a basis for investigating little questioned
assumptions about “the notion of space and the first principles of con-
structions in space,”7 and was a key turning point in the development
of an alternative to what was the standard geometry at that time: the
time-hallowed plane geometry of Euclid.

Recognizing that hypotheses about number-nothing relationships are
as basic to arithmetic as those about notions of space are to geometry,
and wishing to open up mathematics beyond our time-honored stan-
dard arithmetic, and finding, after some dozens of readings, his analysis

5Thanks to Haim Gaifman for his email of 31 March 2008 clarifying some is-
sues in his paper “Non-Standard Models in a Broader Perspective” (in the 2003
AMS collection Nonstandard Models of Arithmetic and Set Theory, ed., A. Enayat
and R. Kossak). Therefore the term alternative is used instead of non-standard
to avoid confusion with existing non-standard arithmetics. They all accept the
basic arithmetic axioms, including the zero axiom, as given, and make their ax-
iom changes intentionally as well. Also at http://www.columbia.edu/~hg17/

nonstandard-02-16-04-cls.pdf
6Riemann. Page references will be drawn from http://www.maths.tcd.ie/pub/

HistMath/People/Riemann/Geom/WKCGeom.html The translation is by William
Kingdom Clifford and appeared in Nature, Vol. VIII (1873), Nos. 183, 184, pp.
14-17, 36, 37. The paper is also at http://www.emis.de/classics/Riemann/ in
the original German as well as English. A more recent (1970s) translation can be
found in Differential Geometry, Vol. II, by Michael Spivak.(see footnote 17)

7Riemann, sentence one.
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pertaining to hypotheses to be a model of brevity, insight, and clarity;
and upon realizing I cannot do nearly as well, I have, therefore, sim-
ply freely substituted terms appropriate for arithmetic in a few of his
sentences to convey some essential ideas.

Here are the first three sentences of On the Hypotheses which lie at
the Bases of Geometry, as applied to arithmetic.

It is known that arithmetic assumes as things given, a
notion nothingness and its relation to the first princi-
ples of the number-concept. She gives the primitive term
zero which is merely nominal, while the true determina-
tions appear in the form of the rules of arithmetic. The
relation of this notion to the number-concept remains
consequently in darkness; we neither perceive whether
and how far their connection is necessary; nor, a priori,
whether it is possible.

Riemann then states that his means of investigation will be an in-
novation called the “triply extended magnitude” based on “general
notions of magnitude.”8 His innovation provided a way to test existing
hypotheses about space. Correspondingly, the potential zeros test ex-
isting hypotheses about number-nothing relations. With this in mind,
I further lay out the nature and scope of the metamathematical issues
wrestled with here by again substituting appropriately in Riemann’s
work.

I have in the first place, therefore, set myself the task
of constructing the notion of potential zeros out of gen-
eral notions of nothing. It will follow from this that
different number zeros are capable of different number-
relations, and consequently that standard arithmetic is
only one possible hypothetico-deductive system concern-
ing the notion of nothing and its relation to the first prin-
ciples of the number-concept. But hence flows as a neces-
sary consequence that the propositions of arithmetic can-
not be derived from general notions of nothingness and
the number-concept, but that the properties that distin-
guish standard arithmetic from other conceivable arith-
metics are only to be deduced from particular assump-
tions. Thus arises the problem, to discover the preferable
views and assumptions among the possible views and as-
sumptions from which number-nothing relations may be
developed; a problem which from the nature of the case

8Riemann, paraphrase of sentence six.
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is not completely certain, since, as will be shown, there
is more than one system of assumptions which serves to
provide a basis for such relations—the most important
hypothetico-deductive system for our present purpose
being the standard arithmetic to the foundation of which
so many have contributed. These systems are—like all
hypothetico-deductive systems—not necessary, but can
be judged on their consistency and fruitfulness. We may
therefore investigate their consistency and fruitfulness,
and, further, inquire about the justice of their extension
beyond the limits of thought to the usual applications of
arithmetic to science.9

I confess to being rather in awe of Riemann’s work and am very
happy to hang on to his coattails here. His rationale for introduc-
ing contrasting assumptions and investigating the systems consequent
upon them has greatly improved my exposition of number-nothing re-
lations. Clearly, the task is to search out and then formulate other
particular assumptions about nothing in mathematical terms. And it
is just here that a major difference arises between his work and mine.

Riemann’s hypotheses concerning geometry, as different as they were
from those of Euclid and Descartes, still shared a basic conceptual
structure. By this I mean they shared a common understanding of all
the relevant terms — space, point, flatness, number, magnitude, di-
mension, curvature, construction in space, passes over. Riemann sim-
ply made definite those terms through his triply extended magnitude
in what turned out to be novel ways, the result being that standard Eu-
clidean/Cartesian geometry became one of many curved geometries. In
contrast, the traditional and potential zeros are not part of some spec-
trum of zeros; they are alternatives to each other. Although I hasten
to assure, the potential zeros fulfill all the functions of the traditional
zero in the best tradition of the Principle of Permanence.

A chasm of meaning separates the traditional zero and the potential
zero. The chasm is due to differing meanings of nothing. Fortunately,
the meaning of nothing at the base of the potential zeros is already used
in mathematics. Since the placeholder zero exemplifies the notion, I re-
fer to it as the placeholder hypothesis. Secondarily, the potential zeros
will stretch usual notions of number a bit. The traditional zero already
does that. The potential zeros just do it in a different way. Interest-
ingly, Riemann implicitly made use of the placeholder hypothesis when

9Riemann, paraphrase of sentences six through ten.
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he replaced the traditional zero in his Riemann Sphere10 with what I
will call a precursor zero. More on this in Section 5.1.

Before explicating the conceptual differences in the next section, I
wish to emphasize again a lesson from Riemann’s construction of his
triply extended magnitude and his precursor zero. In both cases, space
and nothing respectively, he changed the concepts from nominally as-
sumed or invoked axioms into something definite. Riemann showed
that assumptions thought to be “necessary and unalterable accompani-
ments to our thinking” were, in fact, not so necessary or so unalterable.
His placing our notions of space on a more numerate, less qualitative
basis made them more definite and open to empirical investigation.
This lesson has already been drawn by someone who made great use
of the space notions of Riemann when unifying space and time, Albert
Einstein. In his words,

The lack of definiteness which, from the point of view
of empirical importance, adheres to the notion of time in
classical mechanics was veiled by the axiomatic represen-
tation of space and time as things given independently
of our senses. Such a use of notions—independent of the
empirical basis, to which they owe their existence—does
not necessarily damage science. One may however eas-
ily be led into the error of believing that these notions,
whose origin is forgotten, are necessary and unalterable
accompaniments to our thinking, and this error may con-
stitute a serious danger to the progress of science.11

Einstein’s “definiteness” provides a handy way to look at opposing
meanings of nothing and assess their suitability for placing zero on a
more numerate, less qualitative, basis. Such a basis is usually adjudged
more suitable to the empirical purposes of science.

To begin to assess the opposing hypotheses and lay a basis for an
alternative zero, the origins of the traditional zero are examined next,
highlighting the unintended consequences to which it owes its existence
as well as introducing the placeholder hypothesis. For a more precise
comparison given in first order logic, turn to Section 7.3 and particu-
larly 7.3.1. A more philosophical discussion is in Section 10.

10Also known as the Gauss sphere, the extended complex plane, or the complex
projective line.

11Einstein, Albert, “The Fundamentals of Theoretical Physics,” Chapter 12 in
Out of My Later Years, Random House, 1993 edition, p. 69.
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3. The origin and meaning of zero

And so, from all appearances, the discovery of zero was
An Accident brought about by an attempt to make an
unambiguous permanent record of a counting board oper-
ation.

Tobias Dantzig

Nothing can be born out of mere [nihilistic] nothingness.
But from the “emptiness” of the Middle Doctrine, which
is a kind of infinite potentiality, anything and everything
may be born or produced, depending upon what causes
happen to affect it. Various objects and phenomena ap-
pear to the ordinary beholder to be arising out of nothing.
But what precedes them is not in fact [nihilistic] nothing-
ness but the state of ku or potentiality that Nāgārjuna
has been describing.

Daisaku Ikeda

Nothing is as nothing does.

Anonymous

How is nothing used in mathematics? I will sort out two different
zero hypotheses in use and call attention to the origin of the switch
from the nothing of the placeholder to the nothing of the number as
an unintended consequence of switching the use of the zero symbol
from digit to numeral. I focus particularly on the definiteness of the
hypotheses as discussed in the previous section with an eye to laying out
a basis for alternatives to the empty set and the zero axiom; alternatives
suitable for a zero (really zeros) more like other numbers.

3.1. A briefer history of nothing. Babylon is the earliest civiliza-
tion known to have used a placeholder zero.12 Scribes first used a blank
space in their positional notation, and eventually began using a symbol
to indicate more definitely whether a place was to be held or not. From
the Middle East, the placeholder zero was taken to Greece and India
where it met with two very different receptions: rejection in Greece
and acceptance in India.

The placeholder zero was rejected in Greece by those who rejected
ideas of infinity and nothingness. Although atomists such as Leucip-
pus and his student Democritus asserted the existence of the void and

12The general background in this section is drawn primarily from Charles Seife’s
Zero: The Biography of a Dangerous Idea as well as from standard histories.
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infinity as basic to explaining the universe, their ideas and others like
them, including the import from Mesopotamia, were casualties in a
culture war won by Aristotle and other proponents of a finite universe
and what later came to be called a horror vaccui.13

India, on the other hand, turned out to be a welcoming haven for the
placeholder zero. The mathematical newcomer fit right in with already
accepted ideas about an interactive, fillable nothingness such as the
pregnant void, the empty (sunya or shunya), and even a Philosophy of
Void.14 It also fit right in with a different number of digits—working
just as well with the Indian base ten positional notation as with the
base sixty of the Babylonian original. Indians felt it only right that a
symbol representing absence could hold a place where something poten-
tially could be present. No horror of the vacuum here. After centuries
of service elsewhere, efforts began to be made to fit the placeholder
digit in with other numbers. The project went hand in hand with the
emergence of negative numbers prompted by the needs of merchants
and financiers.

3.2. The bank account theory of zero. Amidst a culture support-
ing the normalcy of nothingness and the virtues of the void, mathe-
maticians, notably Brahmagupta, developed the placeholder digit into
a number of nothing named sunya from which the word zero is derived.
An often cited example concerning bank accounts proved influential in
elevating the placeholder to the status of number. It was argued that
a sunya (empty) bank account, one with no money, has a value of
zero money. The difference between zero as the value of an amount of
money versus the nothing of not having a bank account justified zero’s
new status.

Changing the placeholder’s symbol from digit to numeral came with
some unintended consequences. After undergoing arithmetic opera-
tions the symbol still represented emptiness, but in a very different
way from before. As a digit the symbol “0” represented the absence of
the other digits. As a placeholder it represented the temporary absence
of values associated with the place it occupied. This was only assumed
in each case and not specified by the symbol. The symbol was a sort
of shorthand for “the other digits aren’t here now” and “that value is
not here now”. The shorthand performed its limited and very specific
task admirably.

13Henning Genz’s book Nothingness: The Science of Empty Space contains an
excellent discussion concerning this conflict.

14Nāgārjuna’s Philosophy of Sunyata. More on this in Section 10.
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The same oval symbol that interacted well with the other digits faced
different and more diverse tasks as a numeral. And under arithmetic
operations it didn’t interact at all with other numbers. For the purposes
of addition and subtraction, this was great. When zero was multiplied,
however, it acted differently from all the other numbers because none
of the products that resulted were factorable. It annihilated other
numbers; their existence and identity no more. While this was readily
deemed acceptable, matters moved more slowly for division.

Consensus on the undefined status of division by zero was reached
some centuries later after the lack of success of efforts by Brahmagupta
and the much later ones of the great 12th Century C.E. mathematician
Bhaskara Achārya (Bhaskara II). Their lack of success eventually led
to the sophisticated circumlocutions15 of calculus.

In arithmetic the relational notion of nothing associated with the
placeholder zero transmogrified into stark nihilism—the empty even
of emptiness—familiar to us today. It was empty of numbers, but
only by being empty of everything and anything; all existences and
all identities and even, presumably, the very notions of existence and
identity themselves. Zero in its familiar oval form had become truly
exceptional; its meaning in standard arithmetic far from its origins in
the contingent, Indian sunya and the placeholder digit. The pregnant
void was now barren.

Zero, lacking definiteness and numerateness, became the only num-
ber to represent a concept. Even with this violation of the Aristotelian
rationale that had denied infinity the status of number, zero was ac-
cepted when it finally reached Europe because it was just too useful.

3.3. The placeholder hypothesis. Is there a nothing different than
the “empty even of emptiness” implied by the existing number zero?
A nothing whereby existence and identity persist? Obviously there is.
A hypothesis of nothing in the sense of absence could be fillable much
like the placeholder zero is, or at least be interrelated with something.
The question is to what and how? One answer involves something like
the atomist’s idea of filling the void with everything. Let’s look again
at the placeholder and the bank account example and see how nothing
need not be a dead end.

15Of particular interest here is Peirce’s argument with the coherence of the
“Weierstrassian way of regarding the calculus” as it is usually presented through
the limit concept. See Apel, pp. 160, 173-74. Peirce’s intent here primarily con-
cerns a correct philosophical understanding and apprehension of continuity. Mine
concerns the calculus as the limit concept pertains to the concept of nothing.
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The bank account isn’t just empty. It is empty of money. Zero
designates the absence of amounts of money that can potentially be
there. The label “0” has implied or understood referents. The place-
holder zero also designates understood referents. It is not just empty,
it is empty of known digits; digits that can potentially be there. The
emptiness or absence in these examples is specific, definite and testable.
Do we find tens, hundreds, thousandths or not? This analysis leads to
the placeholder or absence hypothesis.

Looking afresh at these examples shows a clear basis in fact for a
simple, commonly experienced interrelatedness of the presence of spec-
ified elements and their absence. Absence in this sense is the source
for the hypothesis of absence that underlies the potential zero. It is
commonly experienced because it is the usual notion of nothing used
in everyday life. It is as simple as the infant’s game of peek-a-boo or
the child’s hide-and-go-seek. We normally understand through context
at least, that if some particular thing or things are absent, they can
potentially be present. And if something is present, it can be absent.
This interchangability is the placeholder or peek-a-boo hypothesis.

Absence as commonly experienced also makes possible alternatives
to the empty set and the zero axiom. The following section begins to
address these foundational issues. The next few sections after show
that the potential zeros or numbers of absence, symbolized by a new
numeral, can perform addition and subtraction equally as well as the
Indian one while functioning more like the other numbers when engaged
in multiplication and division.

At long last, the often rediscovered and much dismissed central in-
sight Bhaskara Achārya recorded in his Bijaganita—a number divided
by zero equals infinity—may be put in a mathematical form less easy
to dismiss than when the insight is formulated in the form n/0 = ∞.16

And it has the added bonus of providing a strong defense against
the “ghosts” Bishop Berkeley used to attack Isaac Newton’s Calculus.
Yes, Bishop, there is a “departed quantity.”

16Bijaganita, meaning “Seed Counting,” is a work of Algebra.
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4. Dedekind and the nature and meaning of numbers

The derivative was first used; it was then discovered;
it was then explored and developed; and it was finally
defined. (emphases in original)

Judith V. Grabiner

By knowing things that exist, you can know that which
does not exist. That is the void.

Musashi

You know what I like about summer days? They’re just
made for doing things. . . even if it’s nothing. Especially
if it’s nothing.

Calvin and Hobbes

Bernhard Riemann wrote about the “merely nominal” and the “true
or essential determinations”17 within the foundations of geometry at
the dawn of a new era in our understanding of number. After untold
centuries of being used, discovered, explored and developed; our hy-
potheses concerning number were finally being axiomatized. Richard
Dedekind, like Riemann a student of Gauss as well as an editor of some
of Riemann’s work, was at the forefront of those following in Euclid’s
footsteps. Working to corral the raw material at hand, he devised18 all
but one of the axioms at the foundation of standard arithmetic and set
them forth in his essay The Nature and Meaning of Numbers.19

Both Dedekind and his friend Georg Cantor, the inventor of set the-
ory, were ambivalent at best about zero and the empty set. And they
were not alone. “Early set theorists and several contemporary meta-
physicians reject the empty set.”20

Regarding the missing axiom Dedekind said, “We intend here for
certain reasons wholly to exclude the empty system which contains no
element at all, although for other investigations it may be appropriate

17Spivak (see fn. 6) substitutes essential for true in his more recent translation
contained in Differential Geometry, Vol. II.

18It has come to my attention very recently that C. S. Peirce, even earlier than
Dedekind, also devised axioms for basic arithmetic. Zero is not in his axioms either.
At this time it seems his omission was due not to uncertainty or uneasiness about
zero, but to some other reason.

19Dedekind, pp. 14-58, esp. p. 33. This is the second of two essays. (see fn. 0)
20Sorensen, Roy, Nothingness, The Stanford Encyclopedia of Philosophy (Spring

2009 Edition), Edward N. Zalta (ed.), http://plato.stanford.edu/archives/

spr2009/entries/nothingness/
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to imagine such a system.”21 Since, by definition, his system22 con-
tained elements, an empty set was a contradiction in terms. It was left
to others to ignore this and complete what are now called the Dedekind-
Peano Axioms of standard arithmetic by bringing in a separate axiom
for zero, the only concept to become a number.

Pointing out the numerateness of the concepts counting, magnitude,
quantity, continuity, and infinity may be helpful in grasping what is
involved in changing zero’s status as a concept by using the place-
holder hypothesis. Dedekind’s axioms capture the essentials of count-
ing; the primordial procedure by which the concepts quantity and mag-
nitude became numerate and definite. His Dedekind Cut made further
use of counting numbers to unify discrete quantities and continuous
magnitudes; making continuity more definite through an arithmetic
procedure. He and Cantor both began the mathematization of infin-
ity through definitions within set theory; Cantor later differentiated
between denumerable (countable) and undenumerable infinities. By
defining and differentiating the concept in numerical terms and thus
making it definite, they answered Aristotle’s objection to classing in-
finity as a number because it was only a concept. All of this is now
commonplace.

Making the concept of nothing definite through numeration can be
done based on the placeholder hypothesis. It is simply a matter of
showing that numbers are present and can be made absent. In this
way I will justify Dedekind’s seemingly odd omission by giving alter-
natives to the empty set and the zero axiom in Section 7; alternatives
which make the concept of nothing numerate and definite; alternatives
that lay bare the empirical basis for our notions of nothing; alterna-
tives based not on a set containing no elements, but on the commonly
experienced interrelatedness of the presence of specified elements and
their absence; an interrelatedness similar to that of the origin of the
number zero: the placeholder zero.

In the preceding I have introduced terms presence and absence that
are uncommon to numbers. From context it should be clear that the
terms are used in their usual senses. The absence/presence hypothe-
sis may equally be called the presence/nonpresence hypothesis or the
here/not here hypothesis. It might also be called the gertrude hypoth-
esis because there is no there there. It is decidedly different than the
term “negative” which assigns a number a different there, rather than

21Dedekind, p. 21.
22For Dedekind system was equivalent to set.
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a lack of there(ness). In fact a negative number would, when absent,
stay negative.

Presence of numbers is normally assumed implicitly in mathematics.
However, since it will be conjoined to absence, making presence explicit
becomes necessary. This will be considered in some detail in Section
7 alongside the concepts of existence and identity in first order logic.
For now let me say that presence will be introduced as a modifier of
number in somewhat the way identity and existence are.

However, unlike with the existence/nonexistence relationship, the
absence/presence transformation does not destroy identity. Identity as
well as existence and other “numbery thingies” persist throughout the
transformation. So for a number a to persist means that a retains any
aspect of ∃a together with whatever stays the same from left to right
in the identity relationship a = a.

The persistence of identity does not occur in the existence/ nonex-
istence duality of Gottlob Frege. The question “to persist or not to
persist” illustrates perfectly the “chasm of meaning” between the dif-
fering hypotheses of nothing referred to earlier in Section 2.

Axiomatizing the numerate alternatives will adhere to the precedent
of history and follow the raw material they are meant to corral. In
the next two sections the raw material, new number zeros obtained by
traveling the well worn path of use, discovery, exploration and devel-
opment; is set forth.

Before moving on let me introduce a topic underlying the foregoing.
While notions such as counting and nothing derive in part from an
empirical basis, some aspects of our understanding of these notions do
not. They do not because they are difficult, if not impossible, to test
directly. Meanings of nothingness especially utilize conventions derived
from pure thought. The validity of these conventions is based on their
effectiveness. The suppositional source for these conventions, on the
other hand, is typically difficult to examine.

Untestable or difficult to test suppositions have influenced and in-
formed so much of the scientific enterprise that the philosopher Karl
Popper has introduced the terminology “metaphysical research pro-
gramme”23 in recognition of their importance. (By metaphysical, Pop-
per means only the untestability (at least at first) of a programme of
investigation and explanation.)

According to Popper the source of a programme has often arisen
from a highly speculative philosophical system of thought. However

23Popper, Karl, Quantum Theory and the Schism in Physics, From the Postscript
to The Logic of Scientific Discovery, 1956, 1982, ed., W. W. Bartley, III, p. 31.
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unrealistic or strange the suppositions of such a system may seem to
us, the habits of thought developed thereby have greatly influenced
what historically constitutes knowledge.

Karl Popper’s idea “metaphysical research programme” is highly rel-
evant to the introduction of an alternative zero in this paper because
just such a programme has greatly influenced and informed my think-
ing. It is not too much to say that I would never have even started this
paper without having developed habits of thought therefrom.

Section 10 introduces the metaphysical research programme which
made this paper possible. The programme is Nāgārjuna’s Philosophy
of Void mentioned earlier in Section 3.1 and in footnote 14. Two cen-
tral features of his thought are relevant. One is defining nothingness
through specifying what is absent. The other is preservation of at least
some characteristics when something becomes nothing along with the
potential for their reappearance. Both buttress arguments supporting
the introduction of an innovative zero sure to be subject to sustained
inquiry. And it’s plain just neat stuff!

Since the interpretation of Nāgārjuna I’ve found most useful is from
the standpoint of pragmatism, I will close this section with a view of
its foundation as a bridge to the past. C. S. Peirce, the founder of
pragmatism, placed great import on the cognizable. The philosopher
Karl-Otto Apel makes clear that

Peirce accepts Kantianism insofar as it entails the re-
striction of the validity of all concepts to possible expe-
rience, and calls this “Pragmatism.” Peirce’s rejection
of incognizable things-in-themselves, owing to just this
very critical restriction, leads him to the possibility—
in fact the unavoidability—of a realist metaphysics, a
metaphysics whose hypothetical postulates must all be
fallible, but whose general concepts must be able to
prove their objective validity “in the long run.” This
is because we cannot conceive the “real” to be anything
other than that which is “cognizable.”24

(Section 7.3.1 has more on the cognizable in relation to first order logic.)
I will argue that Nāgārjuna’s philosophy, wherein Void is to be under-

stood as “no (this particular) thing,” is based on the cognizable. And
if it is so based, it further buttresses the interrelatedness of presence
and absence as source for a zero with an objectively valid axiomatic
foundation. And an objectively valid axiomatic foundation would be
of great benefit to an empirical approach to grasping reality.

24Apel, p. 11.
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5. Toward an Alternative Zero

I shall proceed from the simple to the complex. But in
war more than in any other subject we must begin by
looking at the nature of the whole; for here more than
elsewhere the part and the whole must always be thought
of together.

Karl von Clausewitz

All so-called proofs of the impossibility of infinite num-
bers begin by attributing to the numbers in question all the
properties of finite numbers, whereas the infinite numbers
if they are to be thinkable in any form, must constitute
quite a new type of number.

Georg Cantor

my simple art, which is but systematized common sense
. . . starts upon the supposition that when you have elim-
inated all which is impossible, then whatever remains,
however improbable, must be the truth.

Sherlock Holmes

The road to the potential zeros, alternative arithmetics, and other
alternative mathematics began with my interest in dividing by zero.
Initially expecting little more than a minor diversion, I instead found
myself delving deeper and deeper into a variety of mathematical, philo-
sophical, and historical aspects of the subject. After a few initial efforts
of my own, a search resulted in an acquaintance with the Hyperreals
as used by Abraham Robinson in his Nonstandard Analysis as well as
papers by Jesper Carlström25 and Anton Setzer.26 Their work satisfied
my curiosity for a time, but further rumination resulted in my pursuing
the overall strategy of substituting a new zero for the old one. Why
not create an improved and completely new zero?

A different zero and especially a different notion of nothing seemed
to offer a good chance of overcoming the usual objections to division by
zero. Unexpectedly, some possibility of evading the usual constraints of
Henkal’s Theorem on extending the Complex numbers also arose. All
this while still satisfying the minimum and necessary requirements of a

25Carlström, Jesper: Wheels - on division by zero. Mathematical Structures

in Computer Science, 14(2004): no. 1, 143-184 and on his personal webpage at
http://www2.math.su.se/~jesper/research/wheels/

26Setzer, Anton, Wheels, a draft paper located at http://www.cs.swan.ac.uk/

~csetzer/articles/wheel.pdf
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zero: being the identity element, or “no change” number, of addition,
and being the sum of a number and its additive inverse.

The overall strategy of creating a different zero grew out of playing
around with a particular symbolic form. As it turned out, this symbolic
form and the idea it represents has a long history of being set equal to
zero. It is seductively intuitive and simple to manipulate. Even though
it is not a number zero and does not signify a nothing hypothesis, taking
a brief look at this precursor zero should be helpful in grasping why
my modified version is a zero and does represent an idea of nothing.

5.1. Wallis and Riemann’s precursor zero. John Wallis, whose
Arithmetica infinitorum of 1655 did so much for the development of
Analysis, also introduced the “loveknot” symbol for infinity. He soon
set the expression 1/∞ equal to zero as part of his efforts to arithmetize
geometry.27 Wallis’s infinity symbol represented “the earliest use of the
Scholastic categorematic infinity in the field of arithmetic,”28 or what
was later called an actual infinity. His use of ∞ seemed consistent
with set theory, but rather different from those most common today:
increasing without bound and a quantity larger than any quantity.
The advantages of Wallis’s notation—its ease of use in arithmetic and
calculus, but especially hope29 that the usual objections to division by
zero didn’t apply to an actual infinity—intrigued me.

The “Wallis number,” the reciprocal of infinity, has since been used
in both arithmetic and geometry. Arithmetically, it is set equal to 0 in
the software package Mathematica,30 where ∞ is defined as a positive
infinite quantity. Of course this isn’t “really” equal to zero. Elsewhere
on the website for Mathematica, it is made clear that 1/x only equals
zero as the limit when x increases without bound,31 or

lim
x→∞

1

x
= 0.

At best, the notation for limits is clumsy compared to Wallis’s nota-
tion. Perhaps we can simplify—devise a numerate, arithmetized zero

27Boyer, Carl B., The History of the Calculus and Its Conceptual Development,
Dover Publications, 1959, p. 173. This is a reprint of The Concepts of the Calculus,

A Critical and Historical Discussion of the Derivative And the Integral, Hafner
Publishing, 1949.

28Boyer, p. 170.
29This hope was dashed, alas, but served as a valuable transitional motivation.
30From MathWorld–A Wolfram Web Resource. http://reference.wolfram.

com/mathematica/ref/Infinity.html
31Weisstein, Eric W. “Infinity.” From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/Infinity.html or any basic treatment of limits.
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something like Wallis’s reciprocal without having to resort to the limit
concept.

Bernhard Riemann used 1/∞ in his curved geometry. In his hands,
it became a substitute for zero at the “south pole” of what came to be
called the Riemann Sphere.32 Naturally, the infinity symbol was at the
“north pole.” These uses of ∞ were early, if not the earliest, examples
of a one point compactification. Later, similar use of ∞ as a point at
infinity was made in the affinely extended real numbers and in the real
projective line.

The potential zero will, in a way, make possible generalizing the one
point compactification of Riemann’s zero substitute. This generaliza-
tion will become important in Section 8.1 for straightening out issues
relating to the origin on the Real Number Line and in Section 8.4 for
like issues concerning the origin on the coordinate plane.

Riemann’s geometric idea of an inverse for a point at infinity has
been the most fruitful so far for division by zero. His geometry is
widely used in physics partly because, as an inverse, its zero is well
defined. Mathematica, for example, returns ComplexInfinity, or ∞̃,
when a complex number is divided by zero.33

The idea has also had some influence in computer programming.
The floating point arithmetic known as exact arithmetic formulated
by P. J. Potts and Abbas Edalat34 is an example. The aforementioned
works by Setzer and Carlström owe a debt to their efforts.

5.2. No solace in this non-quanta . Neither Dedekind nor Cantor
used an inverse of an actual infinity in their work on the foundations
of arithmetic. Perhaps both wanted to avoid the long shadow cast by
Bishop Berkeley’s attack on infinitesimals. In any event, they did not
attempt to apply the infinite to the small. Unlike Riemann substituting
Wallis’s number for zero, they did not make any effort to use it, or any
other infinitesimal in set theory. Wallis did say “that 1/∞ represented
an infinitely small quantity, or non-quanta,”35 so it would qualify as an

32Also known variously as the Gauss sphere, the extended complex plane, or the
complex projective line.

33Weisstein, Eric W. “Division by Zero.” From MathWorld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/DivisionbyZero.html For more, follow
links in the article.

34Edalat, Abbas (with Peter John Potts), A New Representation for Exact

Real Numbers, Electronic Notes in Theoretical Computer Science 6, (1997) and
Potts, Peter, Exact Real Arithmetic using Möbius Transformations, Ph. D. Thesis,
1998. These and other papers on exact arithmetic are at http://www.doc.ic.ac.
uk/~ae/papers.html

35Boyer, p. 170.
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infinitesimal. And there seemed to be good reasons why infinitesimals
were not mathematically workable.

Infinitesimals violate the Archimedean axiom36 and the Dedekind
cut. They did not even qualify as numbers until decades after Dedekind
and Cantor’s time when Thoralf Skolem’s hyperintegers led to hyperre-
als. And hyperreals aren’t any closer to being a zero substitute. They
are still in violation of the Archimedean axiom and the Dedekind cut,
but at least an arithmetic relationship between an infinite number and
its reciprocal was defined. Berkeley’s shadow shrank.

The problem with infinitesimals? They just aren’t equal to nothing.
They are always a little bit bigger or smaller. It’s just as true in the case
of 1/∞. Despite assertions37 to the contrary, the 1 in the numerator
doesn’t quite get you to zero. Putting another number in the numerator
won’t help; x/∞ still wouldn’t signify a different nothing hypothesis.
So what other modification might? What else could be substituted for
zero? And will that substitute still violate the Archimedean axiom and
the Dedekind cut?

5.3. The potential zero. Frustrated by the recognition that Wallis’s
numeral simply fails as a number of nothing, but still desiring to divide
by zero, I tinkered38 with the symbol and finally hit upon the idea
of just removing the number one from the numerator and leaving a
blank space behind.39 Instead of one part of infinity, it looked like no
part of infinity, or the absence of any fractional part of a whole. This
seemed like a zero; a zero that wasn’t a primitive term anymore, but
a departed quantity. Note here that I loosely considered ∞ to be “all
the numbers.”

This modification of Wallis’s number still acted like a fraction and
thus continued the advantages of his notation. Removing the number

36Archimedes attributes the idea to Eudoxus of Cnidus.
37Mathematica states 1/∞ = 0. From MathWorld–A Wolfram Web Resource.

http://reference.wolfram.com/mathematica/ref/Infinity.html
38I say tinkered, but a quote from Bill Rodgers, the marathon runner, comes

closer: “If you want to win a race you have to go a little berserk.”
39Simply removing the one from the precursor zero is simple. Interpreting it is

not. The new zeros, if they are to be thinkable in any form, turn out to constitute
quite a new type of number(to paraphrases Cantor’s quote at the beginning of
this section). Please enjoy the intricacies throughout the compare and contrast
approach to elucidating the new type of number that follows. For better or worse
this interpretation resulted from the persistent focus and absorption of someone
who had entirely too much time on his hands. The stumbling efforts presented here
are in aid of those who may wish to stumble along as well and perhaps take or
make other paths.
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one led to completely rethinking the number and to seeing that the
ideas of numerator and denominator no longer applied. There wasn’t
even a blank space above the fraction bar as I thought at one time, so
no Babylonian placeholder redux. The modified symbol, ∞, started to
become one of what I’m now calling potential zeros. The empty set
seemed irrelevant which would have been congenial to Dedekind and
Cantor. A different hypothesis based on a more everyday idea of noth-
ing that I began to recognize as related to the placeholder zero slowly
emerged. A new way of delineating the difference between nothing and
something started to arise.

But as I ran through computation after computation with this modi-
fied symbol, my view altered again. I wondered, “What did the fraction
bar do?”

5.3.1. The absence bar. Instead of dividing, the fraction bar hid things.
I now call it an absence bar. Whatever was below the bar indicated
absent or departed numbers. Whenever the absence bar appeared it
indicated specified numbers were not present in ordinary dimensions
of number. Zero began to seem numerate and definite as discussed in
Sections 2 and 3. To be sure, it wasn’t all that definite at this point.
But this new symbol was a far cry from the purely conceptual and
amorphous nature of the traditional zero.

The absence bar also, I realized much later, inverted the numbers
under it. The significance of this will become apparent.

The symbol below the bar can be varied for convenience sake. It
doesn’t have to be the infinity symbol. But I’ve continued to use “∞”
because of its simplicity and ease of use, and its historically intuitive
connection to zero from Wallis to the present day.

The absence bar, or at least the concept behind it is of central im-
portance. It is perhaps the one truly original part of this paper unlike
much else which turned out to be merely reinvented.

5.3.2. Paradise. There’s a wrinkle here, though, that neither Bhaskara
Achārya, Wallis, nor anyone else seems to have anticipated. One of the
ways an actual infinity differs from a potential infinity is in its com-
pleteness or totality(to use terms from Dedekind). Well, finities are
complete, too. So, soon after beginning to realize the importance of
specifying what is absent, I realized there isn’t any reason to designate
only infinite, or transfinite, sets as absent. True, ∞, or whatever sym-
bol is below the absence bar, would, I expected, usually be defined in
terms of an (actually) infinite set such as the Rationals, the Reals, or
the Complex numbers. But this zero is adaptable and its universe can
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be defined in terms of a finite set. Mathematicians are free to wan-
der through this ‘paradise’ of zeros creating as they will. Even strictly
finitist constructivists could make a variety of zeros. I gradually began
to use the term totality to capture this more general sense: thus the
name totality numbers. Well, I’ve kept the name, but I had to clarify
my thoughts about what exactly is absent even further. (see Section
5.4)

5.3.3. Changing the rules. Another result of extending the specifiabil-
ity of ∞ to finite sets was the realization that rules for using infinite sets
from existing mathematics such as NonStandard Analysis, Affinely Ex-
tended Arithmetic, and Cantor’s Transfinites did not necessarily make
sense for the potential zero. This awareness bolstered what I had come
to see as my main task: creating a zero that operates within the normal
rules of standard arithmetic and thus follows the spirit of the Principle
of Permanence as much as possible. The potential zero in its final form
would flow from the “true determinations” that result from its actual
use. This is what led to the potential zero becoming one of many zeros
within standard arithmetic.

The actual use of the potential zeros is the primary source for differ-
ences in the workings of totality numbers from mathematics involving
other types of infinite numbers. Those differences are set forth in Sec-
tion 6 where, as we will see, the totality numbers can be made to fit well
with the core arithmetic of Dedekind. Other differences are covered in
Section 8.

5.3.4. The zero which project. Which zero is selected from the ‘par-
adise’ available is important. Understanding the consequences atten-
dant on the selection of elements for the universe represented by the
symbol ∞ is crucial. To slightly amend von Clausewitz,40 “. . . in math-
ematics more than in any other subject we must begin by looking at
the nature of the whole; for here more than elsewhere the part and the
whole must always be thought of together.” Not only is it necessary
to recognize differences between the traditional zero and the new zero,
it is also necessary to deal with differences among the new zeros. Un-
like before, arithmetic rules for zero can now be customized to suit the
mathematical context.

Rules for other zeros may be different from basic arithmetic’s “quan-
tity zero.” Section 8.1 covers an example based on the Real number
line. It sets forth rules for zeros specific to point set topology. The def-
inition for these specific zeros leads to rules that are not quite the same

40From epigraph at the beginning of this section.
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as the basic rules for simple arithmetic. The central issue has to do
with the origin point and its relation to a one point compactification.

5.3.5. A multiplicative inverse. The potential zero is a multiplicative
inverse and like any multiplicative inverse ∞×∞ = 1.41 The assertion
here that zero times something doesn’t equal zero is perhaps the most
surprising aspect of this relationship. Unexpected as may be, a multi-
plicative inverse that is not a fraction is the key to a full featured zero.
Reassuringly, any other type of number times zero is still zero. More
will be said about ∞ in the next section.

The product equaling the number one follows along with 1
∞
×∞ = 1

as used by Wallis and Riemann. In both cases the multiplication may
be thought of as taking place simultaneously among many one to one
relationships. The key difference is that the numbers represented by
the potential zero are inverses of their counterparts represented in ∞.

The triangular or “closed loop” relationship among these numbers
seems to be of some significance. Beginning with a finite element sub-
jected to unending recursion results in the presence of a new creation
made up of an infinity of elements such as the Natural numbers. Zero
emerges as this creation is made absent; the quantities departed. Then
combining the two results in a unity, a finite element, and the beginning
arises anew. All three seem to presuppose each other.

Picture ∞×∞ = 1 as a relationship among a point, all points, and
no points. In natural language it might read “the absence of every thing
together with every thing equals everything.” A bit more fancifully—I
can imagine the atomists Leucippus, Democritus, and Epicurus mur-
muring about an atom, all the atoms, and the Void, or perhaps the Void
and all atoms forming a unity. “These, then, must alternate, substance
and void, since neither exists to the exclusion of the other.”42

5.3.6. Panoply numbers, or zero exposed. The infinity sign with the
absence bar stripped off, the inverse of the potential zero, needs to be
taken into account also. I’m calling ∞ a panoply number. Panoply
numbers join potential zeros as a different type of totality number.
The name seems appropriate since pan means “all encompassing,” and
as we’ll see in the next section, Wheeler shows this notation can easily
encompass all dimensions. I also liked the resonance with Riemann’s
“n-ply extended magnitude.”43

41Note that both here and at complex infinity on the Riemann Sphere, a single,
basic equality does not hold, in this case ∞ 6= 1 ÷∞.

42Lucretius, The Way Things Are, Book I. Rolf Humphries translation of De

rerum natura.
43Riemann, p. 14.
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There’s another way to slice these numbers. Preliminarily, we can
say that potential zero numbers are numbers of absence and panoply
and cardinal numbers are numbers of presence. The words existence
and nonexistence might also be used. By contrast, I would say that
multiplication by the traditional zero resulted in the cessation or an-
nihilation of “presence” in a terminal sense; an end with no hope of
regeneration. This implicit meaning of zero, a “true definition” in the
sense of Riemann, constitutes what will be replaced by the potential
zero. The presence/absence relationship is discussed in some detail in
Sections 3 and 7.

5.4. Wheeler’s array. I was heartened44 to learn that the physicist
John A. Wheeler has used the infinity symbol as proxy for the Real
numbers. The numbers are placed in an array.45 Dedekind refers to
the same idea as Wheeler in the course of setting forth an arithmetic
replacement for the geometric idea of magnitude that used to underly
definitions of the Real numbers. He wrote “. . . the system R forms a
well-arranged domain of one dimension extending to infinity on two
opposite sides.”46 I can’t speak for Dedekind, but I was certainly de-
lighted to see Wheeler’s conception of ∞ as an array matching this.

Wheeler’s notation was devised to suit the needs of working with
an n-real-dimensional space. Roger Penrose uses it to great effect.47

Having ∞ stand for an array is a refreshing change from the more
common usage of increasing without bound or from that of a quantity
greater than any real number.

As Penrose points out, one of the challenges of working with an n-
real-dimensional space is denoting the different “sizes” of the space in
question. Meeting this challenge is where Wheeler’s notation shines.
Consider ∞4, ∞6×1019

, and ∞∞. Roger Penrose’s comments make clear
the desirability of the notation.

Almost all the spaces of significance simply have C points
in them. However, there is a vast difference in the ‘sizes’

44I was also heartened to discover that Chuck Norris can divide by zero!
See http://www.chucknorrisfacts.com/page2.html If he can, perhaps we mere
mortals can, too!! Many more of his amazing math abilities can be found at
http://ck022.k12.sd.us/links/chucknorris.htm OMG!!!

45Penrose, Roger, The Road to Reality, 2004, pp. 379-382. No indication that
Wheeler uses an inverse or a subset of the Reals, though. Penrose cites p. 67
in Wheeler, J. A., Neutrinos, Gravitation and Geometry: contribution to Rendi-

conti della Scuola Internazionale di Fisica’ Enrico Fermi-XI, Corso, July 1959.

Zanichelli, Bologna. (Reprinted in 1982.)
46Dedekind, p. 2.
47Penrose, pp. 379, 380, 580-2, 897-907, 916-25.



ON THE HYPOTHESES WHICH LIE AT THE BASES OF ARITHMETIC 25

of these spaces, where. . . we think of this ‘size’ simply as
the dimension [which] may be a natural number (e.g. 4,
in the case of ordinary spacetime, or 6×1019, in the case
of the phase space considered [earlier]), or it could be
infinity, such as with (most of) the Hilbert state-spaces
that arise in quantum mechanics.48

A notation such as Wheeler’s clearly conveys information about the
‘sizes’ of an n-real-dimensional space in a very compact way that is far
more useful than Cantor’s transfinites ℵ0 and ℵ1 can ever hope to be
(where 2ℵ0 = ℵ1 = C).

Wheeler’s use of ∞ and exponents is similar to mine. One difference
is that exponents result quite naturally from arithmetic operations with
totality numbers. And having the potential zero gives the added advan-
tage of being able to maneuver through the various dimensions making
this an operationally constructible n-space. I see this constructibility
as one of the most important consequences of the potential zero. (See
the sections on exponents starting with 6.17 and also 8.5 later on.)

Another difference from Wheeler’s array concerns zero. Zero is in
his array, but not in mine. I substitute 1

∞
which I call the Wallis

number. This is technically and formally important, but I will reserve
further comment on this important difference until Section 8.2 so that
necessary arithmetic rules may first be given in the next section.

5.5. Get to know your zero. Should ‘totalities’ be considered num-
bers? I regard this question as legitimate and interesting. Penrose is
very careful to refer to ∞ as an array and as a handy notation, but
not as a number. After all it has no decimal equivalent so neither the
panoply totality nor the zero are Real or complex. The panoply num-
ber is not a Cardinal since it doesn’t indicate a quantity in the usual
sense. The potential zero indicates “how many” so it may be consid-
ered a Cardinal, but it would be a clumsy ordinal number. Although 0
has recently gained acceptance as a Natural number, it seems awkward
to class ∞ as a Natural.

Given the extensive arithmetic interactions of the Reals and the to-
talities and especially considering how they extend the Reals and Com-
plex numbers operationally, I will refer to them as numbers. I want to
make it clear though, that this decision is mainly for convenience and
may well be determined to be incorrect. If they do qualify as numbers,
they must, as Cantor said about infinite numbers, “constitute quite a
new type of number.”49

48Penrose, p. 379.
49From epigraph at the beginning of this section.
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6. An Alternative Arithmetic

In mathematics, it is indeed imperative to be absolutely
clear that one’s equations make strict and accurate sense.
However, it is equally important not to be insensitive to
‘things going on behind the scenes’ which may ultimately
lead to deeper insights. It is too easy to lose sight of
such things by adhering too rigidly to what appears to be
strictly logical . . .

Roger Penrose

A wrongly perceived emptiness ruins a person of meager
intelligence.
It is like a snake that is wrongly grasped or knowledge
that is wrongly cultivated.

Nāgārjuna

No, I couldn’t endure it, I couldn’t endure it! Suppose,
suppose there are even no doubts in all those calcula-
tions, suppose all that’s been decided in this past month
is clear as day, true as arithmetic. Lord! Even so I
wouldn’t dare! I couldn’t endure it, I couldn’t! What has
this been all along? . . .

Dostoyevsky

The main purpose of this section is to set out workable rules for
arithmetic with the potential zero. The rules governing the interaction
of zero and Reals are quite similar to those for standard arithmetic and
obey the spirit, if not precisely the letter, of the Principle of Perma-
nence. The independence of the zero axiom obviates, of course, any
changes to arithmetic without the potential zero and thus any need to
present those familiar rules.

The symbol “∞” in this section represents an array comprised of the
Real numbers.50 When under the absence bar, each Real is inverted.
The potential zero is not a Real number so it is not included. Con-
sequences of the rules for the potential zero lead to the other totality
numbers: the panoply numbers. The rules also apply to any nonempty
“subarray,” finite or infinite, of the Reals.

The absence or presence of the elements of the array are what’s
important. Remember that the symbol “0” is no longer a number. It
continues, however, in its traditional roles of placeholder, exponent, etc.

50This is incorrect; a simplification for clarity of exposition. It just makes more
sense to wait and introduce the lone exception, the Wallis number, in Section 8.2.
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Totality numbers comprised of complex numbers and the arithmetic
involving complex and totality numbers are considered separately in
Section 8.7.

A couple of cautions are in order here. One has to do with geometric
interpretation and the other with the order of operations. In reference
to geometric interpretation, we are used to a pretty close correspon-
dence between arithmetic with Real numbers and arithmetic based on
the point set topology known as the Real number line. That correspon-
dence no longer holds in some significant and not inconsiderable ways
because the new zero is no longer located at the origin of the number
line.

Furthermore, the new zero turns out to be only one of a myriad of
zero numbers in somewhat the same way as the imaginary i is only
one of the imaginary numbers. None of the zero numbers are on the
number line. Indeed, none have any geometric referent at all. All this
was rather disconcerting at first. Long time habits were hard for me to
break. Before concluding that some part of the arithmetic given here
is incorrect simply because it no longer works in terms of the number
line, compare it with the arithmetic of the Real number line given in
Section 8.1.

Disconcerting as it was, breaking those long time habits was worth-
while – even liberating. I now see the different arithmetics as advanta-
geous consequences of the contingency and adaptability of the totality
numbers. In this case, two different sorts of mathematical objects are
being dealt with. To put it somewhat crudely, basic arithmetic de-
rives from counting and quantifiying things, while arithmetic on the
Real number line arises from notions of space, spatial relations, and
movement. By defining zeros in terms of their respective contexts, key
differences between the two are highlighted. These differences will call,
I hope, renewed attention to the importance of Dedekind’s insistence,
“Instead of [geometric concepts] I demand that arithmetic shall be de-
veloped out of itself.”51

The other caution concerns order of operations. The familiar order
will be amended to reflect the new numbers. As a first approximation,
put totality numbers first. Details are in Section 6.25.

As careful as I’ve tried to be, errors may remain. A few doozies have
been corrected already. Regardless of error, I hope this work shows
enough to warrant further pursuit of this subject.

As a final comment before proceeding with the arithmetic, I remark
happily on the surprise that abbreviations for the totality numbers,

51Dedekind, p. 5.
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they being rather like containers for other numbers, turn out to be pot
and pan. Let’s get cooking. Or clanging. . .

6.1. Zero as multiplicative inverse. The potential zero ∞ is the
multiplicative inverse of the totality ∞ so that, as usual for a multi-
plicative inverse,

(1) ∞×∞ = 1

Unusually for a multiplicative inverse, it is not a fraction (remember
“—” is not a fraction bar), although the similarities are obvious. But
dissimilarities arise, too. Usually either the multiplicand or the multi-
plier could be divided on both sides of the equation and the equality
would hold. That is not true here for the following case.

∞ 6= 1 ÷∞
This is the one exception to the usual rules of solving an equality

I have been able to find. Similarly, complex infinity on the Riemann
Sphere fails at a single inequality. These inequalities are indicative of
how closely related the Riemann Sphere and the new arithmetic are.
As we move through the arithmetic, a vocabulary and grammar will
develop suited to discussing this and related issues in more depth.

And perhaps it bears repeating here that the symbol below the bar
can be varied for convenience sake. It doesn’t have to be the infinity
symbol. I’ve continued to use “∞” because of its simplicity and ease
of use, and its historically intuitive connection to zero from Wallis to
the present day.

6.2. Division by zero. Division by the potential zero is quite simple
and straightforward since it is so similar to division by a fraction. The
potential zero appears to perform the familiar “fraction somersault”
so that the dividend can be multiplied by the inverse of the divisor.
Here’s an example.

4 ÷∞ = 4 ×∞
First off, where did the absence bar go? Is it under ∞ at any

point? Normally, a fraction bar along with the numerator and de-
nominator will remain after the “somersault.” In practice this step
is often skipped. An example is dividing by 1

8
. Writing 8

1
is usually

skipped; from

4 ÷ 1

8
to 4 × 8

Nothing like that is skipped with the potential zero inverse gyration. To
the extent there is a somersault, it is “internal,” meaning each element
of the array inverts. But there is no step where the bar is below the
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∞ symbol, not even implicitly. Division by zero results in a reveal;
a becoming present. What is revealed, or “uncovered,” is the inverse.
And the inverse is whatever is revealed or uncovered. At any rate, since
I have not been able to determine any useful purpose if the absence bar
were there, eliminating it avoids clutter.

Even though it’s division, the simple symbol shift here is more like
the sign change from + to − for inverses in addition and subtraction.
The totality number is a zero if the bar is shown and a panoply number
if not. It’s that simple.

What to do with four times ∞? The ∞ term, when attached to a
natural number such as 4, merges to form a different kind of number—
a panoply number. Like with the integer +4 or an imaginary 4i, the
multiplication operation becomes implicit and 4∞ is in final form, a
number in its own right. This number is the absent array made present
by division. The array, when present, may be considered orthogonal
to 4, although for most purposes this is irrelevant. Division by zero
transforms the dividend; the absent reappears. It may be read four
pan.

This notation is very similar to one representing a directed infinity52

in the software package Mathematica. A directed infinity results from
computations on the Complex numbers and the Complex plane. How-
ever, “∞” in Mathematica designates “an unbounded quantity that is
greater than every real number.”53 Needless to say, notational similar-
ities do not extend to conceptual ones.

A geometric interpretation of panoply numbers will be offered in
Section 8.4. The tangent of zero degrees is suggestive in this regard as
well (see Section 8.3).

6.3. Division by zero reprised. The first example may have been
too quick. Let’s take the long way around; slow mo as it were.

52From MathWorld–A Wolfram Web Resource. http://functions.wolfram.

com/Constants/DirectedInfinity/introductions/Symbols/02/
53Weisstein, Eric W. “Infinity.” From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/Infinity.html



ON THE HYPOTHESES WHICH LIE AT THE BASES OF ARITHMETIC 30

4 ÷∞ =
4

∞
=

4

∞ × ∞
∞

=
4 ×∞
∞×∞

=
4 ×∞

1
= 4 ×∞
= 4∞

The totality ∞ is treated like any other number when divided by
itself. So ∞÷∞ = 1. More on this in Section 6.4.

In general,

(2)
x

∞ = x∞

[Note that all variables in this arithmetic section represent Real num-
bers unless otherwise specified.]

6.3.1. Examples. Before going on, here are a few more examples to
breed familiarity.

32

∞ = 32∞
−7.4

∞ = −7.4∞
8a

∞ = 8a∞
√

2

∞ =
√

2∞

6.3.2. An objection to division by zero answered.

a. The objection. For division to work with the traditional zero, there
must be some number n so that 4 ÷ 0 = n. This is needed for the
equality to hold. Normally both sides of an equality like this can be
multiplied by a reciprocal of one of the factors.

For example,
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8 ÷ 4 = 2

8 × (
1

4
× 4) = 2 × 4

8 = 8

and the equality holds. But, assuming 0 has a reciprocal, when we try
this with 4 ÷ 0 = n

4 × (
1

0
× 0) = n × 0

and cancel the zeros on the left, then

4 = n × 0

However, 4 6= n × 0. There is no n to multiply times 0 that will
equal 4. The equality does not hold because any number times this
zero equals zero. This is one of the ways to show that division by zero
is undefined.

b. The reply. Let’s divide 4 by zero when it’s not an integer, but does
have an inverse, and see if the equality holds.

4 ÷∞ = n(3)

4 ×∞ = n(4)

4 ×∞ = n(5)

4 ×∞×∞ = n ×∞(6)

4 × 1 = n ×∞(7)

4 = n ×∞(8)

Set n equal to the pan number 4∞. Then

4 = 4∞×∞(9)

= 4 ×∞×∞(10)

= 4 × 1(11)

4 = 4(12)

and the equality holds. There is an n to multiply times ∞ that will
equal 4. The critical steps are 4, 5, and 6. Division by zero works
because not quite every number times zero equals zero anymore. This
zero is a defined divisor. And n can only be a distinct pan number.
Multiplication of Real numbers and panoply numbers is closed as will
become clear as we work through the rest of this section. In short, the
new zero, unlike the traditional zero, behaves like other numbers.
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The potential zero times any Real number is still zero as we shall
see in Section 6.5. However, zero times a panoply number is not. The
totality numbers behave a little like the imaginary i. A −1 pops out
most conveniently when squaring i while a 1 or +1 pops out when these
totality numbers get together. It’s quite a wondrous thing.

6.4. Division by the inverse of zero. After division by zero, a log-
ical question would be, “What about division of real numbers by its
inverse, the panoply number?”

For example, does it make any sense to have an expression like

4

∞ ?

In Nonstandard Analysis any number x in the numerator simply
reduces to 1 by cancellation. Cancellation is the simplest way to handle
this. I am not completely satisfied that some sensible meaning may
not work out. Further discussion of this matter will be reserved until
Section 6.19. I hope that a possible use will be more apparent in the
context of exponents.

For more, specifically, on 1
∞

, the Wallis number, see Section 8.2.

6.5. Multiplication by zero. While my main focus was on dividing
by zero, I paid little attention to multiplying by zero. There didn’t seem
to be any reason to do so. Any number multiplied by the potential
zero should just disappear. After all that is what always happened
in the past. And Reals can’t go above the absence bar of this zero
because there’s no numerator. And if Wallis’s number is treated like a
hyperreal by allowing numbers above the absence bar then they would
disappear under those rules, too. Zero times anything equals zero. It
seemed simple. But perhaps I hadn’t met my production quota yet for
new numbers. My attention was drawn to the other main objection
to dividing by zero.54 While it’s true that 4 × 0 = 5 × 0, the equality
doesn’t continue to hold after both sides are divided by zero because
4 6= 5.

Historically, there seems to have been very little attention paid to
having a different way of multiplying by zero. Bhaskara Achārya
(Bhaskara II) recommended that the nonzero factors of multiples of
zero should be considered in case of any further operations with that
product. To put it another way, he thought that a number times zero
equals zero, but that the number should not necessarily disappear from
the product. It should be possible for the nonzero factor to persist or
remain “contained” in the zero product just as occurs whenever nonzero

54Thanks Jenny.
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numbers are multiplied. I’ve found only one attempt to do something
like he proposed.

A few years ago Jesper Carlström suggested a way to implement
Bhaskara Achārya’s idea for sums as well as products in his Doctoral
thesis.

Note that the usual rule ‘0x = 0’, which states that
“zero-terms can be erased”, is replaced by rules stating
that zero-terms can be moved in certain ways in an ex-
pression. Indeed, . . . addition by a zero-term commutes
with multiplication . . . if a zero-term occurs somewhere
inside an expression, then it can be moved outside.55

Although my approach differs, I share Carlström’s thinking that

Introducing solutions to equations like x + 1 = 0 is not
very different from introducing solutions to an equation
[like] x × 2 = 1, or from introducing new elements for
division by zero.56

6.5.1. The absence factor. Another whole new world of number opened
up once I realized that a number multiplied by the potential zero could
just merge. Four times zero would look like 4∞ and be read pot four
or four zero. Zero emerged as an absence factor or element rather than
an annihilation factor when dividing again by zero regenerated the
original number: 4∞÷∞ = 4. (See Section 6.2 on panoply numbers
for the rationale behind the merge, and Section 6.10 for dividing zeros
by zero.)

No longer is there just a basic, simple, solitary zero. The products
of multiplication by the absence factor can be called potential number
zeros, potential zeros, or pot numbers. Multiplication by the basic
zero and the other potential zeros results in Real numbers departing;
becoming hidden or absent, not annihilated. All these new zeros with
Real parts are an embarrassment of riches. Makes one a bit giddy, or
perhaps giddier.

No longer is four times zero equal to five times zero. Indeed,

4 ×∞ 6= 5 ×∞
4∞ 6= 5∞

Each side, each zero, is unique. 4zero does not equal pot5. This
promised to overcome the other objection to dividing by zero.

In general,

55Carlström, p. 6.
56Carlström, personal email, 25 September 2008.



ON THE HYPOTHESES WHICH LIE AT THE BASES OF ARITHMETIC 34

(13) r · ∞ = r∞
and for any distinct r, q,

(14) ∞ 6= r∞ 6= q∞
Note that these zero numbers all have the same Cardinality.

6.5.2. Examples. Here are a some examples to get used to the idea that
multiplication by zero is no longer an annihilation, but an absence; a
potential presence.

936 ×∞ = 936∞
−23 ×∞ = −23∞

4π ×∞ = 4π∞
16a ×∞ = 16a∞

6.6. Dividing by zero numbers. Division by pot zeros; elaborations
on a basic theme.

4 ÷ 2∞ = 2∞
28π / 7∞ = 4π∞

−23 ÷ .4∞ = −57.5∞
7a

a∞ = 7∞

In general,

(15) r ÷ q∞ =
r

q
∞

These new “absence numbers” also led to a reconsideration of ad-
dition and subtraction of both pot and pan numbers. This will be
addressed later.

6.7. Multiplying by panoply numbers. Panoply numbers, the re-
sult of multiplying a Real number and the panoply number, have al-
ready been introduced in Section 6.2. To briefly recap, the ∞ term,
when attached to a Real number such as 4, designates a different kind
of number: panoply numbers.

Like with an imaginary 4i or the integer +4, the multiplication op-
eration becomes implicit, and 4∞ is in final form; a number in its own
right. This number is the absent array made present by division. The
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array manifests orthogonal to 4. Division by zero results in a transfor-
mation on the dividend; a reappearance of the absent. It may be read
four pan.

Also mentioned (in Section 5.1), this notation is very similar to one
representing a directed infinity57 in the software package Mathematica.
A directed infinity results from computations on the Complex numbers
and the Complex plane. However, “∞” in Mathematica designates
“an unbounded quantity that is greater than every real number.”58

Needless to say, notational similarities do not extend to conceptual
ones.

In general, any Real number times any panoply number is

(16) x × y∞ = xy∞
A geometric interpretation of panoply numbers will be offered in

Section 8.4. The tangent of zero degrees is suggestive of the geometric
interpretation as shown in Section 8.3.

6.8. Multiplying by zero numbers. Multiplying by zero numbers
is similar to multiplying by panoply numbers. In general,

(17) x × y∞ = xy∞
The rules for multiplication with the potential zero are different than
with the traditional zero. No longer is it just zero times anything
equals zero—full stop. There’s a lot more variety now. Happily that
variety brings zero into line with the other numbers in terms of factoring
products.

6.9. Dividing zero by Real numbers. Like before, but different.
Dividing any zero number by any Real number still results in zero. It’s
just that the quotient is not the same zero.

(18) ∞÷ x =
1

x
∞

In other words the divisor is the Real part of the absence number.

6.10. Dividing zero numbers by zero numbers. Dividing any zero
number by another zero number always results in a Real number.

4∞÷∞ = 4

4∞÷ 2∞ = 2

57From MathWorld–A Wolfram Web Resource. http://functions.wolfram.

com/Constants/DirectedInfinity/introductions/Symbols/02/
58Weisstein, Eric W. “Infinity.” From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/Infinity.html
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In general,

q∞÷∞ = q(19)

q∞ / r∞ = q/r(20)

6.10.1. Indeterminate no more. The expression 0/0 is considered inde-
terminate. I trust the preceding makes clear why ∞/∞ and division
involving other zeros as in Equation 20 are not indeterminate.

6.11. Multiplying zero numbers and panoply numbers. Here’s
an example:

4∞× 3∞ = (4 · 3)(∞ ·∞)

= (12)(1)

= 12

In general,

(21) x∞× y∞ = xy

6.12. Dividing panoply numbers by panoply numbers. As al-
ready mentioned in Section 6.6, ∞ ÷ ∞ = 1. This is the same as
with normal arithmetic and hyperreal arithmetic. A number divided
by itself equals one.

Here are examples of division when panoply numbers are in both the
numerator and denominator.

4∞÷∞ = 4

4∞÷ 20∞ =
1

5
22π∞/2∞ = 11π

13∞/2π∞ =
6.5

π
3.6∞
−0.4∞ = −9

The totality part reduces to one so that in general,

q∞÷ r∞ =
q∞
r∞(22)

=
q

r
(23)
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6.13. Dividing panoply numbers by zeros and zeros by panoply

numbers. Expressions such as

4∞÷∞,
.25∞
20∞ , 4∞÷∞, and

.25∞
20∞

simplify to expressions involving totality numbers with exponents. Dis-
cussion of this starts in Section 6.17.

6.14. Multiplying zeros by zeros and panoply numbers by pans.

Expressions such as

∞ × ∞
∞ × ∞

3∞ × 2
√

2∞
.25∞ × 20∞

also simplify to expressions involving totality numbers with exponents,
and are explained beginning in Section 6.17.

6.15. Identity element of addition. The new zero is still the iden-
tity element of addition.

4 + ∞ = 4

No Real number changes when zero is added.

(24) x + ∞ = x

Nor does any panoply number change. For example,

(25) x∞ + ∞ = x∞
Sometimes zero numbers may not be neglected, however. For example,
zero plus zero is not zero.

(26) ∞ + ∞ = 2∞
This is explained in more detail in the next section.
∞ is not the only identity element of addition involving nonzero

numbers.

x + y∞ = x(27)

x∞ + y∞ = x∞(28)

In short, any zero number may be neglected since they share the same
Cardinality. For those familiar with the history of infinitesimals in
the development of The Calculus, Section 8.6 includes a discussion of
how Equations 24 and 27 could have precluded Berkeley’s criticism of
infinitesimals.
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6.16. Adding zero and panoply numbers. Adding zero numbers
seems to work about like you’d expect.

4∞ + 3∞ = 7∞
And so does adding panoply numbers.

9∞ + 5∞ = 14∞
In general, for totality numbers with any Real parts q, r,

(29) q∞ + r∞ = (q + r)∞
and

(30) q∞ + r∞ = (q + r)∞
when q and r are not additive inverses. If they are additive inverses
the sum of the zero numbers is

x∞ + (−x)∞ =
1

∞∞2(31)

See Section 6.23.2 for an explanation of this surprising result.
And the sum of pan numbers with Real parts that are additive in-

verses is not

(32) x∞ + (−x)∞ = ∞
See Section 6.23.3 about this.

6.17. Exponents. Multiplying pot and pan numbers with themselves
results in situations where it makes sense to use exponents as shorthand
for these many, simultaneous one to one relationships. The usual rules
for exponents apply to totality numbers.

As mentioned in Section 5.4 on Wheeler’s array, the potential zero
makes possible an operational way to move about amidst an n-real-
dimensional space. These next few sections on exponents lay out the
arithmetic for doing this and is developed further in Section 8.5.

6.18. Positive exponents. For pot numbers where n, r ≥ 0,

∞×∞ = (∞)2(33)

∞× 1∞ = ∞2(34)

1∞× 1∞ = ∞2(35)

x∞× y∞ = xy∞2;(36)

x∞n × y∞r = xy(∞)n+r(37)
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For pan numbers where n, r ≥ 0,

∞×∞ = ∞2(38)

∞× 1∞ = ∞2(39)

1∞× 1∞ = ∞2(40)

x∞× y∞ = xy∞2(41)

x∞n × y∞r = xy∞n+r(42)

The next section will show there is no need to restrict pan numbers to
positive exponents. The negative exponents are introduced separately
to show the contrast with pot numbers.

6.19. Negative exponents. This section underscores the difference
between inverses that are fractions and those that aren’t. For pan
numbers,

∞ 6= ∞−1(43)

∞(−1) =
1

∞ = ∞(44)

∞(−n) = ∞n(45)

1

∞ = ∞−1(46)

x

∞n
= x∞−n(47)

∞−n ×∞−r = ∞−(n+r)(48)

Equations 46 and 47 brings back questions regarding infinitesimals and
the Archimedean axiom. Discussion of this topic and how to under-
stand these numbers will be deferred to Section 8.2.

6.20. Zero exponent. As mentioned earlier, no change is proposed
for the symbol“0” in its use as an exponent.

∞0 =
∞
∞ = 1(49)

∞0 =
∞
∞ = 1(50)

6.21. Mixing exponents. Restatement of the basic multiplication re-
lationship with implicit 1 made explicit.

(51) ∞1 ×∞1 = 1

The implication of the basic relationship is canceling. Exponents
here indicate a regrouping; matching pots and pans in a one to one
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relationship insofar as is possible. Like musical chairs, whatever is still
standing is the base.

∞n ×∞n = 1 if n ≥ 0 and(52)

∞n ×∞r = ∞n−r if n > r and r ≥ 0, but(53)

∞n ×∞r = ∞r−n when r > n and n ≥ 0(54)

In other words the exponent is |n − r| and the base with the larger
exponent becomes the new base (if n 6= r and n, r ≥ 0).

When ∞ is in the dividend/numerator and ∞ is the divisor, then
the quotient is ( 1

∞
)∞. The Wallis number assumes the position of the

Real part in the absence numbers. Given Equation 46 this may be
written

∞
∞ = ∞−1 ×∞(55)

In general, for all n > 0

(56)
∞n

∞r
= (∞−r)∞n

and is in final form.
As may be inferred from Equations 45 and 47, if n < 0, then Equation

56 resolves to pan numbers.

(57)
∞n

∞r
= ∞n−r

6.22. Roots and fractional exponents. The usual rules for roots
and fractional exponents apply.

∞ = (
√
∞)2(58)

∞ = (
√∞)2(59) √

∞3 = ∞ 3

2(60)
n

√
∞r = ∞ r

n(61)
n

√
∞r = ∞ r

n(62)

6.23. Subtraction. This section used to be much shorter. Originally,
without thinking much about it, I just set ∞ equal to n−n. Fortunately
Terence Gaffney, a mathematician friend of mine, showed me the flaw
in that. It leads to a logical contradiction at least as serious as the
one with division by the other zero. So I fixed it. Then the gang at
sci.math showed me the flaw in that. Here’s my second fix based on
their assistance.
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6.23.1. Subtracting Real numbers. Anything minus itself equals the Wal-
lis zero since it is unsigned. An example,

4 − 4 =
1

∞∞

In general,

(63) x − x =
1

∞∞

This definition of zero replaces the historical, subtraction-based, defini-
tion of 0. The two, new definitions, both multiplicative and subtractive,
indicate a team approach; a distribution of labor for the different as-
pects of zero. Utilizing the unsigned Wallis number and its zero turned
out to be key in defining the subtraction of Real additive inverses and
highlights the importance of an unsigned zero.

6.23.2. Subtracting zero numbers. Subtracting zero numbers leads to a
squared zero.

x∞− x∞ = (x − x)∞(64)

= (
1

∞∞)∞(65)

=
1

∞∞2(66)

6.23.3. Subtracting panoply numbers. Similar reasoning also applies to
subtracting panoply numbers.

(67) x∞− x∞ =
1

∞
6.23.4. Subtraction: quantity vs location. A reminder that geometrical
or locational arithmetic will be different. For example, x− x = 1

∞
, the

Wallis number instead of the Wallis zero. Again, there will be more on
this in Sections 8.1 and 8.2.

6.24. Addition rule of equality. A question arises due to the def-
initions of the identity element of addition and the sum of additive
inverses. With the current zero, the identity element, x + 0 = x, is
easily shown equivalent to the sum of additive inverses by the additive
rule of equality.

x − x + 0 = x − x(68)

x − x + 0 = 0(69)

x − x = 0(70)
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This is not the case with the new zeros.

x + n∞ = x(71)

x − x + n∞ = x − x(72)

and by Equation 63

x − x + n∞ =
1

∞∞(73)

x − x =
1

∞∞(74)

Superficially, dropping the zeros looks the same in Equations 69 and 73.
Each are just a simplification, a convention. But the latter is defined
and leads to an apparent difficulty if followed through. To wit,

x − x + n∞− n∞ =
1

∞∞− n∞(75)

x − x +
1

∞∞2 =
1

∞∞− n∞(76)

by Equation 66. How is the “correct” result in the following equation

(77) x − x =
1

∞∞
to be reached? At this time I must appeal to convention in the same
way that it must be appealed to in Equations 69 and 70. This is not
satisfying to me at present. More thought is needed. But note three
things. One, this is a far less serious problem than the lack of definition
of division by the other zero. But two, in Equation 76 notice the term
1
∞
∞− n∞. Later in Section 8.2 we will see that it is desirable for the

term 1
∞

− n to equal n. Which means that by Equation 29,

1

∞∞− n∞ = (
1

∞ − n)∞(78)

= n∞2(79)

This result may be fine in and of itself, but not in relation to Equation
76. It is still better, I reiterate, than arithmetic without division by
zero. And with the proper convention, it shouldn’t be necessary to
even go there. I hope. Oh, the third thing. All these proliferating
zero numbers with exponents puts one’s mind to Newton’s Calculus.
Instead of infinitesimals (or turtles), it’s zeros all the way down.

6.24.1. Reflexivity and identity. Underlying the above difficulty is the
oddity of different zeros sharing the same cardinality. Unlike fractions
that share the same cardinality, the zeros cannot be reduced. At least
not in the same sense. One thought I’ve had for dealing with this has
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to do with assigning somewhat different meanings to reflexivity and
identity. For example zero numbers could be considered reflexive in
that they share the same cardinality, but nonidentical when their Real
parts are not equal.

6.25. Order of operations. PEMDAS, the order of operations, needs
modifying to serve the needs of the new arithmetic. The new mnemonic
peps things up. It works out to be PEPPMDAS. PP may indicate either
pot/pan or pan/pot.

6.26. Associate, commute, distribute. Given the forgoing, the as-
sociative, commutative, and distributive properties hold no surprises.
These properties continue within potential zeros and within panoply
numbers. Furthermore, a field is formed by the new numbers together
with the Reals. It may be termed a prairie to continue the sylvan
theme of field and meadow, and to indicate the much larger scope of
this field relative to them. This will be dealt with in a separate paper.

6.27. Extended arithmetic: Reals, Pots, and Pans. Adding and
subtracting Real and totality number combinations is quite similar to
adding and subtracting polynomials. Combine like terms and reduce.
Multiply polynomial like expressions in the same manner as polynomi-
als. The terms ∞ and ∞ act much like the i in complex numbers or
like variables in polynomials.

6.28. Archimedean Axiom. Some comment here to the effect that
the Archimedean Axiom is not violated unlike the hyperreals?
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7. The Nature and Meaning of Zero

Yet it is antecedently certain that continuities there must
be; the new idea must be generated out of the old; it has
its basis in them; and in the end its justification is found
in the completion and organization which it contributes
to them; – its removal of their surds and inconsistencies.

John Dewey

It is of the highest importance in the art of detection
to be able to recognize, out of a number of facts, which
are incidental and which are vital. Otherwise your en-
ergy and attention must be dissipated instead of being
concentrated.

Sherlock Holmes

. . . axiom: Most improvements make matters worse.

George Will

This section is an exercise in retrograde analysis as is normal when
introducing new axioms. Can a different notion of nothing, the place-
holder hypothesis proposed in Section 3, be incorporated into the al-
ready very obvious basics of mathematical and even logical thought? If
the potential zero substitutes well for the traditional, standard zero as
I have attempted to show, then some foundational revision must lead
to this number. To what depth need we go to change—if only a small
tweak—the existing foundations of the zero edifice? And the change
should be relatively innocuous lest cracks appear in the foundations of
other parts of mathematics and violate the Principle of Permanence.
After all, we want a different nothing that enriches rather than harms
mathematics.

My analysis covers two areas. One is the axioms of Richard Dedekind
familiar to many as the Peano Postulates without the zero postulate.
The other area is the axioms of Ernst Zermelo, Thoralf Skolem, and
Abraham Fraenkel, the basis for Zermelo–Fraenkel set theory. In both
cases I follow precedents given by Giuseppe Peano and Gottlob Frege
in the foundations for the standard zero as much as possible. Like
Peano, I will add a zero axiom to the Dedekind axioms. In Frege’s
case, I reject the empty set in favor of another set. The continuity
with his work lies in using the reflexive relationship as part of the basis
for a set of nothing. Both the empty set and my alternative, the absent
set, can be derived using the reflexive property. Once the absent set
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is established, its substitution in the Zermelo–Fraenkel axioms for the
empty set is addressed.

Adding a zero axiom to the Dedekind axioms is pretty straightfor-
ward. There are a few wrinkles, but nothing major. However, my
alternative to the empty set is not so straightforward. Frege’s basis for
the empty set is in terms of first order logic together with the reflexive
property of equality. The modification I introduce (which I would like
to think is in the way of a clarification) involves a subtle point con-
cerning the existential quantifier. The point turns out to depend on
what the definition of “is” is. Once understood, my amendment to his
quantifiers leads directly to the absent set.

As a general comment, this section will be limited primarily to is-
sues pertaining to the mathematics of nothing; its logic and the symbols
used. However, contrasts between Frege’s work and mine call into ques-
tion some fundamental views of reality that are untestable in principle.
Reference to such fundamentally different views and their consequences
has already been made toward the end of Section 4 in terms of meta-
physics in Popper’s sense and will be addressed in Section 10. The
contrasts also pertain to the issues regarding empiricism mentioned
at the end of Section 2. These issues are addressed explicitly here in
Section 7.3.1.

7.1. An alternative standard arithmetic. Peano and I both share
the view that nothingness is a basic and obvious mathematical concept
deserving of its status as an axiom. We differ as to the symbol and the
concept of nothing it represents.

Axiom. ∞ is a number.

The difference arises from the different primitive terms derived as
they are from different parts of arithmetic, “—” from division and “0”
from subtraction. Another obvious difference will appear below when
the axiom is placed in a different order than Peano’s.

For those who may argue that the new zero is sufficiently different
and thus improperly classed as a number, please feel free to substitute
“array” or something to the effect of “manipulable mathematical object
or term” for “number” in the axiom.

7.1.1. Primitive terms. Two primitive terms, “—” and “∞,” “replace
the primitive term “0.” The line is called the absence bar. Its an-
tecedent is the bar used in fractions. It indicates the absence of what-
ever is beneath the bar. This component is crucial for the purposes of
arithmetic with the new zero and should not lightly be changed. And
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it is crucial for the potential zero interacting with other numbers in
ways the traditional zero cannot.

The infinity symbol, on the other hand, is less crucial. I do find
this choice desirable for a number of reasons, but other symbols may
be used and in some particularly complex instances even be decidedly
preferable. Whichever symbol is used, it should indicate the universe
of discourse in use (or possibly some subset). In the case of standard
arithmetic the specified numbers are the Natural numbers. How that
specification is introduced axiomatically will be considered next.

7.1.2. Placing the zero axiom. Unlike with the zero axiom in standard
arithmetic, the alternative zero axiom does not precede the others.
Since it has to do with the absence of the Natural numbers, it must
needs be placed after the axioms establishing those numbers. It is also
necessary to define ∞ as the Natural numbers. So a statement such as
N ≡ ∞ should be placed between the successor axioms and the zero
axiom. Here N should not be considered to possess cardinality or any
other attribute except as given in the successor axioms. N is a simple
series as stated in Section 5.4.

7.1.3. Dedekind/Alternative Axioms. As mentioned earlier, I will be
following the same procedure as Peano; using Dedekind’s axioms and
adding axioms for zero. This is an alternative to Standard Arithmetic.

The following is based on Eric Weisstein’s entry for Peano’s Axioms
in Wolfram Research’s MathworldTM.59

Peano’s Axioms, revised version:

(1) One is a number.
(2) If a is a number, the successor of a is a number.
(3) One is not the successor of a number.
(4) Two numbers of which the successors are equal are themselves

equal.
(5) (induction axiom.) If a set S of numbers contains one and

also the successor of every number in S, then one and every
successive number is in S.

(6) S is a number and is represented by ∞.
(7) One ∞ (or 1∞) is a number.
(8) If a∞ is a number, the successor of a∞ is a number.
(9) One ∞ is not the successor of a number.

59Weisstein, Eric W. “Peano’s Axioms.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/PeanosAxioms.html
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Instead of five axioms there are now nine. Axiom 4 applies to the
zero numbers and does not need repeating. Induction applies as well.
The additional axioms are justified by a gain in explanatory power.

7.2. Replacing the empty set. The empty set provides a basis for
the traditional number zero from the standpoint of set theory. It needs
replacing in set theoretic axioms in order to produce an emptiness con-
sistent with the potential zero. A represention for this notion called the
absent set is introduced below. The logical basis for this represention
has some commonalities with Frege’s basis for the empty set. We’ll
turn to his work as a starting point.

7.2.1. Frege’s logic. Here’s an example of the ingenious way Gottlob
Frege arrived at the empty set. He makes use of reflexivity or self-
identity.

We choose a set M , and let A(x) be the condition (state-
ment) x 6= x. Then there is a set A which consists of
those elements x ∈ M for which x 6= x. This set is
denoted by ∅ and is called the empty set.60

Let’s also review its counterpart, the equality x = x. In the same
context, an element of M is observed in the expression x = x. In this
case, each element satisfies the equality condition. The element is then
placed in set A.61

Alfred Tarski(using different terminology) comments that of the sets
formed from x = x and x 6= x, the “first . . . is satisfied by every indi-
vidual and the second by none.”62 I have no argument with any of this
if, that is, one wants only the standard zero. And so it is amidst this
material that I propose to create an absent set.

7.3. The absent set. Of crucial importance for establishing the ab-
sent set is the meaning assigned to the term “is” in the phrase “there
is.” The possible definitions are in the dictionary under the word “be.”
There are several. Frege’s choice is made clear by his use of “there ex-
ists” interchangeably with “there is.” This is, of course, the existential

60Oxford Users’ Guide to Mathematics, Zeidler, E., ed., Hunt, B., trans. Oxford
University Press, 2004, p. 901. Title of the original: Teubner-Taschenbuch der

Mathematik, Vol 1, 1996.
61The disposition of M is not normally discussed as far as I know and it is not

relevant for my purposes. But I wonder, does it empty out? Or is it still full of all
its elements? Maybe perfect copies of all the elements end up in A.

62Tarski, Alfred, and Jan Tarski, Introduction to Logic and to the Methodology

of the Deductive Sciences, 4th ed., Oxford University Press US, 1994, p. 67.
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quantifier the symbol for which is “∃.”63 What if a different meaning
for “is” is used?

Another common definition of “is” is: “To have, maintain, or occupy
a place, situation, or position<the book is on the table>.”64 Based on
this definition, I would like to introduce the phrase “here is” into first
order logic. Let’s start to revise Frege by substituting “here is” in the
example above.

We choose a set M , and let A(x) be the condition (state-
ment) x = x. Then here is a set A which consists of those
elements x ∈ M for which x = x.

Saying “here is a set ‘satisfied by every individual’ ” makes it possible
to refer to a set that isn’t here, but could be. By agreeing that the
negation of “here,” has the sense of “being absent” or “is absent,” first
order logic will have two additional choices: presence and absence. To
put it another way, simple existence would be defined in terms of here
and not here to go along with lack of existence.

For a more formal symbol, I propose the letter “H” to symbolize the
quantifier “here is” in the same sans serif font as ∃. The hereness or
presential quantifier, H, so as to be in keeping with the tradition of the
other quantifiers, should be considered both reversed and inverted.

The absent set follows from the negation of this quantifier.

We choose a set M , and let A(x) be the condition (state-
ment) x = x. Then a present set HA is not here which
consists of those elements x ∈ M for which x 6= x. This
set is denoted by 6 HA and is called the absent set.

Putting 6 H in front of any set designates that set as absent. Using “6 H”
or “¬H” indicates the absential quantifier. It seems rather messy and
I welcome someone devising a symbol as elegant and evocative as “∅”
is for the empty set. Or perhaps it won’t seem so messy after a while.

The empty, or null set, instead of being derived as in ∃x¬∃y(y ∈ x),65

would be written Hx¬∃y(y ∈ x) where exists is a shorthand for present
and absent, (H ∨ ¬H) ⇔ ∃.

63Sometimes “for some” is used instead to express ∃. See The Princeton Com-

panion to Mathematics, Timothy Gower, ed., p. 14. This makes no difference to
the subject at hand.

64Merriam-Webster, Inc, Merriam-Webster’s Collegiate Dictionary, 11th ed.,
Merriam-Webster, 2003, p. 105.

65Jech, Thomas, “Set Theory”, The Stanford Encyclopedia of Philosophy (Spring
2009 Edition), Edward N. Zalta (ed.), http://plato.stanford.edu/archives/

spr2009/entries/set-theory/ZF.html



ON THE HYPOTHESES WHICH LIE AT THE BASES OF ARITHMETIC 49

7.3.1. Empirically friendly sets. Absent and present sets are empiri-
cally friendly because presence and absence are matters of observation.
“Something exists” is simply an assertion which is of itself independent
of sensory data. It lacks cognizable content. Existence should be deter-
mined by observation. If we understand “exists” as meaning something
either determined to be present(sensed) or absent(but capable of being
sensed), then the empty set would consist of those members that don’t
exist because they are neither present nor capable of being present.
This actually describes the empty set as defined by Frege pretty well.
An element x defined by x 6= x can neither be present nor capable of
being present. If only he’d reconsidered ∃x from this standpoint. . .,
but he didn’t.

The argument I am making about empirically friendly sets applies
to objects available to the senses. What about mental objects like
the empty set? I think it is not too much of a stretch to make the
general thrust of the argument apply to them as well. Simply take into
account the mentally cognizable along with the sensibly cognizable. I
refer again to the quote by Peirce at the end of Section 4, especially
the part where he says “we cannot conceive the real to be anything
other than that which is cognizable.”66 And would say that this applies
to the existent just as much as to the real. In other words, whatever
members may be contained in the domain of discourse, those members’
existence is equivalent to their being cognizable sensibly or mentally.

As to how the domain of discourse may be enlarged or modified, I
tend to the thought of John Dewey.

And so it is with mathematical knowledge, or with knowl-
edge of politics or art. Their objects are not known till
they are made in course of the process of experimental
thinking. Their usefulness when made is whatever, from
infinity to zero, experience may subsequently determine
it to be.67

Dewey is at pains to say that he means experience in a very unre-
stricted, encompassing way. But this takes us rather far afield.

The preceding lays out a basis for an alternative to the empty set in
terms of logic. I now turn to showing how this alternative might apply
specifically to mathematics by describing how some of the Zermelo–
Fraenkel axioms can be modified. The basic approach should provide
a good indication as to how axioms in other systems can be modified.

66Apel, p. 11.
67Dewey, John, Essays in Experimental Logic, Dover Edition, 2004, p. 213.
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7.4. Modifying Zermelo–Fraenkel set theory. Various versions of
the Zermelo–Fraenkel axioms exist. A helpful overview by Eric Weis-
stein is at Wolfram Research’s MathworldTM. The following is in ref-
erence to his entry.68

The presential quantifier introduced in Section 7.3 and the existential
quantifier are interchangeable in Zermelo–Fraenkel set theory. Practi-
cally speaking, if something exists, then it’s here, or, perhaps, vice
versa. Both denote “for some” so nothing more is needed. Updating
ZF by substituting one for the other is a simple matter.

The other step in modifying the axioms of Zermelo and Fraenkel
pertains to the empty set. It occurs in two places: the axioms of
Infinity and Foundation. In the case of the Axiom of Foundation (also
called Axiom of Regularity) there is no change. The empty set stays.
It refers to something neither present nor absent in this axiom as can
easily be seen.

Axiom of Foundation. ∀S[S 6= ∅ ⇒ (Hx ∈ S)S ∩ x = ∅]
For the Axiom of Infinity, a return to the tradition of Dedekind’s

axioms is recommended. The empty set should be replaced with a
first element such as used in counting. As Dedekind says “We call this
element, which we shall denote in what follows by the symbol 1, the
base-element of N . . . ”69 So the Axiom of Infinity could be written

Axiom of Infinity. HS[1 ∈ S ∧ (∀x ∈ S)[x ∪ {x} ∈ S]]

As has become common, the empty set is folded in to the Axiom
of Infinity instead of being established by its own axiom. For clarity,
the axiom for the absent set will be separate. The separateness should
help comparison of the differing axiom systems. Besides that, it just
doesn’t seem to belong there.

Axiom of the Absent Set. ¬HS[(∀x ∈ S)[¬Hx]]

It may also be written

Axiom of the Absent Set. 6 HS[(∀x ∈ S)[6 Hx]]

I have felt rather out of my depth in this section, but hope some
effort made here will be helpful in choosing an axiom or axioms for the
potential zero.

68Weisstein, Eric W. “Zermelo-Fraenkel Axioms.”From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/Zermelo-FraenkelAxioms.html

69Dedekind, p. 33.
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8. Some Alternative Mathematics

The mathematician is embarked on an adventure which
he can only stop in an arbitrary way and which at every
instant brings a radical novelty.

Jean Cavaillès

In just such investigations one needs to exercise the great-
est care so that even with the best intention to be honest
he shall not, through a hasty choice of expressions bor-
rowed from other notions already developed, allow himself
to be led into the use of inadmissible transfers from one
domain to the other.

Richard Dedekind

[Under Construction] [Remaining sections consist of rough notes ex-
cept for Section 9.1 on the use of the Lorentz term in Einstein’s Special
Theory of Relativity.]

8.1. The Real Number Line.

Just as negative and fractional rational numbers are
formed by a new creation, and as the laws of operating
with these numbers must and can be reduced to the laws
of operating with positive integers, so we must endeavor
completely to define irrational numbers by means of the
rational numbers alone.

Richard Dedekind

[Under Construction] [Remaining sections consist of rough notes ex-
cept for Section 9.1 on the use of the Lorentz term in Einstein’s Special
Theory of Relativity.]
This generalization (from Reimann sphere

to plane/number line since substitute Wallis number)

will be important in Section 8.1

for straightening out issues relating to the origin

of the Real Number Line and in Section 8.4

for like issues with the origin

of the coordinate plane and

will be dealt with there. Zero not on number line. Potential zero
is absence of point sets so is not a point set itself. Origin a differ-
ent number(see next section). Riemann magnitude–Dedekind divorced
number definitions from magnitude; zero as magnitude –zero as number



ON THE HYPOTHESES WHICH LIE AT THE BASES OF ARITHMETIC 52

Differences in arithmetic relate to difference between quantity and
magnitude.

Div by zero orthogonal rotation = line set topology

8.2. The Wallis Number. [Under Construction] [Remaining sections
consist of rough notes except for Section 9.1 on the use of the Lorentz
term in Einstein’s Special Theory of Relativity.]
∞−1 and 1

∞
New origin number—substitute for zero on number line.

8.3. Trigonometry. [Under Construction] [Remaining sections con-
sist of rough notes except for Section 9.1 on the use of the Lorentz
term in Einstein’s Special Theory of Relativity.]

Tangent = ∞ — points at orthogonal rotation for div by zero.
zero degrees = ∞ degrees

8.4. Geometry. [Under Construction] [Remaining sections consist of
rough notes except for Section 9.1 on the use of the Lorentz term in
Einstein’s Special Theory of Relativity.]

origin of coordinate plane = ∞−1 and 1
∞

– the Wallis number again.
Slope of vertical line equals ∞
Div by zero orthogonal rotation = helping to create plane
Plane created/constructed by ∞×∞ = ∞2

8.5. Exponents as Dimension. [Under Construction] [Remaining
sections consist of rough notes except for Section 9.1 on the use of
the Lorentz term in Einstein’s Special Theory of Relativity.]
separate subsection? -- zero vs zeroth dimensions,

zero D as identity dimen. Remember Wheeler

ref in Road to Reality Division by zero is a change of dimension
or an orthogonal rotation of the totality ∞. Section 6.17 generalizes
this for repeated divisions by zero. Although not apparent here, I
should also note some similarity to a notation used by John Archibald
Wheeler when exponents are used with the infinity symbol. I came
across a brief reference recently70, but have not yet been able to gain
access the original and investigate just how similar the notations are.

Perhaps generalize to nonorthogonal rotations. Vectorlike.
comment: remember to discuss identity one!

Give it a name?

70In Roger Penrose’s Road to Reality, p. 380
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8.6. The Calculus. [Under Construction] [Remaining sections consist
of rough notes except for Section 9.1 on the use of the Lorentz term in
Einstein’s Special Theory of Relativity.]

Lots less discontinuities. Much of calculus is now arithmetic.
Refer to exception to order of operations in calculus.
Berkeley answered. Similarity to Newton’s original calculus.
Archimedian axiom; Dedekind postulate re sections

per Cajori on p. 35

8.7. Complex Numbers. [Under Construction] [Remaining sections
consist of rough notes except for Section 9.1 on the use of the Lorentz
term in Einstein’s Special Theory of Relativity.]

Seems to work for complex numbers, too. Absence of complex num-
bers made present through division by zero. Is there an imaginary zero;
∞ i? If on plane –yes, if not no? Is 1

∞
imaginary, but not ∞ ?

This notation, 4∞, is very similar to one for a directed infinity.71 It
is used for results from computations on the Complex numbers and the
Complex plane in the software package Mathematica.

There is a traditional symbol for complex infinity72 (Riemann’s point
at infinity) that looks similar to the potential zero.

Dividing 1/0 = ∞ in Complex numbers is defined.73 BUT 1 6= 0×∞.

8.8. Matrices. [Under Construction] [Remaining sections consist of
rough notes except for Section 9.1 on the use of the Lorentz term in
Einstein’s Special Theory of Relativity.]

The multiplicative inverse of a nonsingular matrix is its matrix in-
verse.74

An array is a one line matrix?

Linear algebra the following is a quote from somewhere In matrix
algebra (or linear algebra in general), one can define a pseudo-division,
by setting a/b = ab+, in which b+ represents the pseudoinverse of b.
It can be proven that if b−1 exists, then b+ = b−1. If b equals 0, then
0+ = 0; see Generalized inverse.

71From MathWorld–A Wolfram Web Resource. http://functions.wolfram.

com/Constants/DirectedInfinity/introductions/Symbols/02/
72Weisstein, Eric W. “Complex Infinity.” From MathWorld–A Wolfram Web

Resource. http://mathworld.wolfram.com/ComplexInfinity.html
73Weisstein, Eric W. “Division by Zero.” From MathWorld–A Wolfram Web

Resource. http://mathworld.wolfram.com/DivisionbyZero.html
74Barile, Margherita. “Multiplicative Inverse” From MathWorld–A Wolfram

Web Resource, created by Eric W. Weisstein. http://mathworld.wolfram.com/

MultiplicativeInverse.html
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9. Some Applications to Physics

The answer to these questions [about the reality which
underlies space] can only be got by starting from the con-
ception of phenomena which has hitherto been justified by
experience, and which Newton assumed as a foundation,
and by making in this conception the successive changes
required by facts which it cannot explain. Researches
starting from general notions, like the investigation we
have just made, can only be useful in preventing this work
from being hampered by too narrow views, and progress
in knowledge of the interdependence of things from be-
ing checked by traditional prejudices. This leads us into
the domain of another science, of physic, into which the
object of this work does not allow us to go to-day.

Bernhard Riemann

I would remark in passing that a recognition that a thing
may be continuous in one respect and discrete in another
would obviate a great many difficulties.

John Dewey

All things prevail for those for whom emptiness prevails;
Nothing whatever prevails for those for whom emptiness
prevails.

Nāgārjuna

[Under Construction] [Remaining sections consist of rough notes ex-
cept for Section 9.1 on the use of the Lorentz term in Einstein’s Special
Theory of Relativity.]

The purpose of this section is to look at some examples where zero
is important in physics. Differences in mathematics with the potential
zero are presented in order to call attention to cases where it may be
possible to see if the new “number-domain created in our mind” helps
to more “accurately investigate our notions of space and time.”

9.1. The Lorentz term and the potential zero. The Lorentz fac-
tor or term is a basic building block of Einstein’s Special Theory of
Relativity. It appears in equations such as those for length contrac-
tion, time dilation, and relativistic mass. Equation 80 is a version of
the Lorentz term.

(80) γ =
c√

c2 − u2
where u=velocity
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The result when the velocity u equals light speed, c, is the math un-
derlying the well known idea that the speed of light is a speed limit.
Although undefined mathematically, division by 0 is interpreted here
as infinity in the sense of increasing without bound. What happens
when a new zero is used? Here the simplest case of the potential zero
is used.

γ =
c√
∞

(81)

γ =
c

∞1/2
(82)

γ = c · ∞1/2(83)

γ = c∞1/2(84)

Division with this new zero is defined as has been shown earlier.
Is its definition in accord with the existing experimental evidence of
physics? Or might it point toward a new avenue of inquiry?

Division with the new zero indicates that γ is at an inflection point.
One way to read this is that c∞1/2 indicates some sort of rotation.
The math may indicate a transformation of the energy of the velocity
into something else. Perhaps it can be used to describe a physical
process like complex numbers describe the transformation of electricity
and magnetism from one to the other. In any event the math is quite
different and may warrant a fresh look at the phenomena.

Questions arise as to whether a zero of dimension one is the appro-
priate one to use here. Determining what is absent is necessary for
deciding the dimensionality of the difference. Might it be more appro-
priate to say that the absent is of the four dimensions of spacetime? If
so, then the γ would be equal to an expression raised to the 2nd power.

(85) γ = c∞2

Some thought seems to be needed here.
Along with the dimensionality (correct exponent) of the difference,

it may be necessary to decide the type of difference as well. Is a zero or
a Wallis number more appropriate? However, the results in Equations
84 and 85 would stay the same regardless of the choice made.

9.2. Singularities Inflected. [Under Construction]
[Remaining sections consist of rough notes]

Current view - physics disappears.
Dr. Wheeler at first resisted this conclusion,

leading to a confrontation with Dr. Oppenheimer
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at a conference in Belgium in 1958, in which Dr. Wheeler

said that the collapse theory does not give

an acceptable answer to the fate of matter in such

a star. He was trying to fight against the idea that the

laws of physics could lead to a singularity,

Dr. Charles Misner, a professor at the University of

Maryland and a former student, said. In short, how could

physics lead to a violation itself to no physics?

Dr. Wheeler and others were finally brought around

when David Finkelstein, now an emeritus professor

at Georgia Tech, developed mathematical techniques

that could treat both the inside and the outside

of the collapsing star.

quoted from NYT Obituary

Comment: previous section leads into inflection

points in GR, i.e. Big Bang, and in general.

9.3. The Dirac delta function. [Under Construction]
[Remaining sections consist of rough notes]

Paul Dirac needed a function that does not exist in the mathematics
he knew. He needed an integral, or area, of an interval when the interval
becomes zero. The need addressed by the Delta Function is built into
the new arithmetic. When an interval of an integral is equal to zero
essentially the need is to find the area of a line (or ray) with width zero.
As discussed in Sections 8.1 and 8.2, the width of a line is the Wallis
number, 1

∞
. The Wallis number applies because the line is centered on

a point. The length times the width is 1
∞

×∞ and equals one.

You can visualize the delta function as a function that
vanishes outside a narrow interval on the x-axis, and
whose integral over any region that includes that inter-
val is 1. But the delta function cannot be defined as the
limit of such a function – call it Dn – as the narrow inter-
val approaches 0, because the limit does not exist. What
does exist, though, is the limit as n approaches infinity
of the integral of the product of Dn and any ordinary
function f(x). If Dn is centered on the point a, the limit
of the integral of this product approaches f(a). This is
the context in which the delta “function” appears in all
applications.75

75Layzer, David, personal communication, paraphrasation of passage from Dirac,
Paul, “The Principles of Quantum Mechanic” 4th ed. A clear account of the delta
function begins on p. 58.
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9.4. Space: grainy or smooth? [Under Construction]
[Remaining sections consist of rough notes]

If any one should say that we cannot conceive of space as
anything else than continuous, I should venture to doubt
it and to call attention to the fact that a far advanced,
refined scientific training is demanded in order to per-
ceive clearly the essence of continuity and to compre-
hend that besides rational quantitative relations, also ir-
rational, and besides algebraic, also transcendental quan-
titative relations are conceivable.

Richard Dedekind

If we suppose that bodies exist independently of posi-
tion, the curvature is everywhere constant, and it then
results from astronomical measurements that it cannot
be different from zero; or at any rate its reciprocal must
be an area in comparison with which the range of our
telescopes may be neglected. But if this independence of
bodies from position does not exist, we cannot draw con-
clusions from metric relations of the great, to those of the
infinitely small; in that case the curvature at each point
may have an arbitrary value in three directions, provided
that the total curvature of every measurable portion of
space does not differ sensibly from zero. Still more com-
plicated relations may exist if we no longer suppose the
linear element expressible as the square root of a quadric
differential. Now it seems that the empirical notions on
which the metrical determinations of space are founded,
the notion of a solid body and of a ray of light, cease to
be valid for the infinitely small. We are therefore quite
at liberty to suppose that the metric relations of space in
the infinitely small do not conform to the hypotheses of
geometry; and we ought in fact to suppose it, if we can
thereby obtain a simpler explanation of phenomena.

The question of the validity of the hypotheses of geom-
etry in the infinitely small is bound up with the question
of the ground of the metric relations of space. In this
last question, which we may still regard as belonging to
the doctrine of space, is found the application of the re-
mark made above; that in a discrete manifoldness, the
ground of its metric relations is given in the notion of
it, while in a continuous manifoldness, this ground must
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come from outside. Either therefore the reality which
underlies space must form a discrete manifoldness, or we
must seek the gound of its metric relations outside it, in
binding forces which act upon it.

The answer to these questions can only be got by start-
ing from the conception of phenomena which has hitherto
been justified by experience, and which Newton assumed
as a foundation, and by making in this conception the
successive changes required by facts which it cannot ex-
plain. Researches starting from general notions, like the
investigation we have just made, can only be useful in
preventing this work from being hampered by too narrow
views, and progress in knowledge of the interdependence
of things from being checked by traditional prejudices.

This leads us into the domain of another science, of
physic, into which the object of this work does not allow
us to go to-day.76

Riemann

Comment: The zero’s universe, whether continuous or

only everywhere dense, may hold some relevance

to this question.

dialetheism

Absence may provide continuity to (discontinuous) presence.

9.4.1. Virtual Particles: Out of the Zeroth Dimension? [Under Con-
struction]
[Remaining sections consist of rough notes]

And if we knew for certain that space was discontinu-
ous there would be nothing to prevent us, in case we
so desired, from filling up its gaps, in thought, and thus
making it continuous; this filling up would consist in a
creation of new point-individuals and would have to be
effected in accordance with the above principle.

Richard Dedekind

do they come from zeroth dimension? Sure, why not?

10. A philosophy of no thing

There is no such thing as nothingness, and zero does not
exist. Everything is something. Nothing is nothing. Man
lives more by affirmation than by bread.

76Riemann, pp. 7-8.
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Victor Hugo

Set theory is exact theology.

Rudy Rucker

[Under Construction] [Remaining sections consist of rough notes]
Remember reference to Popper’s metaphysical research programme

earlier and that this is support for placeholder hypothesis as mentioned
end of section 2.

The criteria of contingency and relationship matches the view of
nothings found in a particular Indian philosophy. This philosophy was
put forth in the 2nd and 3rd Centuries C. E. by the influential Buddhist
reformer Nāgārjuna. Note that a wide range of interpretation and un-
derstanding of his work has developed over the centuries. Nāgārjuna’s
thought has been likened to that of such disparate figures as Kant,
Hume, Nietzsche, and Wittgenstein. To illustrate the variety further,
here’s a look at some of the translations of a key term, sunyata. Ex-
amples include emptiness, relativity, fullness, and void. Naturally, the
interpretations presented here support the ideas related to the new
zero. Other interpretations may not be so supportive. Also note that
the terms nothingness and emptiness are used interchangeably for the
most part. Context makes clear the couple of places where they differ.

Nāgārjuna states the following77 about emptiness

All this is empty

The key word here is this. Professor David Kalupahana comments on
the significance of Nāgārjuna’s statement.

Thus, for Nāgārjuna, emptiness(sunyata) was no more
than what is implied in the statement“All this is empty.”
The statement “All this is empty,” is not identical with
the statement “All is empty.” In fact, as pointed out
in the annotation, nowhere in the Karika78 can one come
across an absolute statement such as “All is empty.” It is
indeed significant that even when making a universalized
statement, Nāgārjuna retains the demonstrative “this” in
order to eliminate the absolutist sting.79

(italics in original)

As Kalupahana makes clear, Nāgārjuna’s hypothesis concerning empti-
ness(sunyata) is always and only made up of particular instances of “the

77Quotation from Mulamadhyamakakarika of Nāgārjuna - The Philosophy of the
Middle Way, Kalupahana, David, p. ??.

78Karika is a common abbreviation for Nāgārjuna’s treatise.
79Kalupahana, p. 85.
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empty(sunya).” In other words, this emptiness, or nothingness, is al-
ways contingent and dependent upon specific “nothings” such as those
given in the preceding two sections

This notion of nothingness dependent upon specific nothings is in
contrast to the notion underlying the number zero presently found in
mathematics. That notion is absence only and is not dependent on
anything – certainly not on the counting numbers. A symbol well
suited for holding a place has simply been plopped down amongst the
other numbers. It works well for addition and subtraction; not so well
for multiplication and division.

If we accept that the current number zero is not dependent, at least
one more possibility arises. Can the current zero itself be regarded as
a specific instance of the empty? After all, the word zero does derive
from sunya, the Sanskrit word for empty used by Nāgārjuna. The key
question for Nāgārjuna would be “Is it evident?” Does it have a referent
in an empirical sense? Does it actually refer to an “absence only” that
is unaffected by things? Nāgārjuna might reason like this: If absence
only exists then it either has mathematical bounds or it does not. If it
has bounds, it is dependent upon bounds, and thus is not only absence.
If it does not have bounds it would be the only mathematical object.
However, other mathematical objects exist, therefore zero, in the sense
of absence only as presently hypothesized, is not evident and therefore
not a specific instance of the empty.

My reasoning a la Nāgārjuna is supported, I believe, by Kalupahana’s
analysis of the importance of evidence, identification, and empiricism
in Nāgārjuna’s thought. A brief example should suffice.

An absolutistic view of emptiness would certainly contra-
dict [Nāgārjuna’s] empirical method that calls for identi-
fication as a test of truth or reality. “Non-substantiality”
or “emptiness,” taken in themselves, would be as abstract
and unidentifiable as a substance.80. . . “emptiness,” dis-
tinguished from “the empty”. . . would be as unidentifi-
able and therefore nonsensical as any other metaphysical
conception that Nāgārjuna was endeavoring to refute.81

(quotation marks in original)

I am reading the “absolutistic view of emptiness” referred to above
as emptiness that exists without reference to anything else. This seems
to me to describe the current zero. It is an “ ‘emptiness,’ distinguished

80The substance Nāgārjuna refutes refers to any metaphysical or non-empirical
substance.

81Kalupahana, p. 85.
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from ‘the empty.’ ” In other words the primitive term zero as presently
hypothesized can be considered as absence in and of itself. It is not in
reference to some collection of specific absences of numbers considered
as a totality. To be sure, the number zero interacts with other numbers
through some of the rules of arithmetic, but this does not affect the
assumptions regarding absence found in the primitive term as instituted
by the independent zero axiom.

Finally, I wish to bring out one more point from Nāgārjuna’s thought
of relevance to the new zero. That is a sense in which potential is related
to nothingness. To do so we turn from the close scholarly analysis of
Professor Kalupahana to a philosopher, Daisaku Ikeda, writing about
Nāgārjuna’s emptiness from a completely different Buddhist tradition.

Nothing can be born out of mere [nihilistic] nothingness.
But from the “emptiness” of the Middle Doctrine, which
is a kind of infinite potentiality, anything and everything
may be born or produced, depending upon what causes
happen to affect it. Various objects and phenomena ap-
pear to the ordinary beholder to be arising out of noth-
ing. But what precedes them is not in fact [nihilistic]
nothingness but the state of ku [Jpn.] or potentiality
that Nāgārjuna has been describing.82

This passage shows, yet again, the deep contrast between the com-
peting versions of nothing. This concludes my discussion of the various
ideas, notions, and concepts underlying the potential zero. An example
of a number zero based on them is introduced in the next section.

(Jonathan Cender)
P.O. Box 982

Koloa, HI 96756-0982

E-mail address: jkcmsal@yahoo.com

82Buddhism, the First Millenium, Ikeda, Daisaku, trans., Watson, Burton, 1977,
p. 141.


