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Work from the Most Probable Macrostate, and
Relation to the Adiabatic Piston Problem

Jack Denur
Electric & Gas Technology, Inc.; 3233 West Kingsley Road; Garland, Texas 75041-2205

Abstract. A system’s entropy is maximized not when it is localized in its most probable
macrostate, but when it is in its most probable distribution of macrostates. This distrib-
ution includes all macrostates, including, albeit typically with much smaller probability
than the most probable macrostate, those far removed from the most probable one. It is
this distribution, and not the most probable macrostate alone, that characterizes true ther-
modynamic equilibrium. Thus, work, albeit typically only in small amounts, is extractable
from a system localized in its most probable macrostate. We demonstrate these points via a
simple system. We show that a small amount of work can be extracted from a box of gas in
thermal equilibrium with a heat reservoir even if the gas is in its most probable macrostate
with exactly half of the gas molecules in both the left and right halves of the box. We then
qualitatively consider the relation to the adiabatic piston problem.
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I. INTRODUCTION

True thermodynamic equilibrium — maximum entropy, zero extractable work — is
the most probable distribution of macrostates. This distribution includes all macrostates,
including, albeit typically with much smaller probability than the most probable macrostate,
those far removed from the most probable one. Thus, a system localized, or “frozen,” in
its most probable macrostate is not in true thermodynamic equilibrium, and hence has a
capacity, albeit typically only a small one, for increasing its entropy and for doing work.

The distinction between true thermodynamic equilibrium and the most probable
macrostate is not always clearly made. Perhaps the most commonly stated viewpoint
is that the most probable macrostate corresponds to true thermodynamic equilibrium,
and that fluctuations to less probable macrostates correspond to spontaneous decreases
in entropy, interpreted either as a violation of a classical formulation of the second law
of thermodynamics that does not consider fluctuations, or consistently with a statistical-
mechanical formulation thereof that encompasses fluctuations [1]. However, Guggen-
heim [2] and Pippard [3], for example, make this distinction very clearly. They carefully
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explain how fluctuations away from the most probable macrostate increase — not de-
crease — the entropy, because these fluctuations delocalize a system in phase space to
beyond the phase-space volume occupied by the most probable macrostate alone.

In Sec. II, we demonstrate these points via a simple system. We show that a small
amount of work can be extracted from a box of gas in thermal equilibrium with a heat
reservoir even if the gas is in its most probable macrostate with exactly half of the
gas molecules in both the left and right halves of the box. Then, in Sec. III, we then
qualitatively consider the relation of our discussions of Sec. II to the adiabatic piston
problem.

In Secs. II and III, we assume that the number N of gas molecules is large. In the
Appendix, modifications for small N, specifically, for N = 2, are discussed.

II. A SMALL AMOUNT OF WORK FROM THE MOST
PROBABLE MACROSTATE

Consider a box containing /N ideal gas molecules in thermal equilibrium with a heat
reservoir at temperature 7. (For simplicity, let N be even.) Let N/2 + AN be the
number of molecules in the right half of the box and N/2 — AN the number in the left

half at a given instant of time. The probability of a macrostate corresponding to a given
AN is
N!
(X +AN) (Z—AN)!
2N (27 N)V/2 (M)
N %-ﬁ-AN N %—AN
2m (5 + AN (325) 7 [ (5 - AN (A2

= P (AN = 0) ¢ 2AAN/N, (1)

P(AN)=27"

|2

In the second line of Eq. (1), we employed Stirling’s approximation to second order,
that is, including the factor (2r N )1/ %: and, in the third line of Eq. (1), we employed the
Gaussian approximation to the binomial distribution [4]. Both of these approximations
are already fairly accurate even for N as small as 10 (the former one is not far off even
for N = 2), and both very rapidly approach perfect accuracy for large V. (The dot equal
sign = means very nearly equal to.) For the most probable macrostate, AN = 0, Eq. (1)
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reduces to

P(AN =0)=27% ]]VV! -
[(5)!]
v N 2N ()Y

w2 1/2N_ 9 \ /2
) (m) 2 —(m) . @)

Note that employing Stirling’s approximation only to first order, that is, neglecting the
factor (2r IV )1/ ?_incorrectly yields P (AN = 0) = 1. Applying our result of Eq. (2) to
the third line of Eq. (1) yields

2 \"? —2(AN)2/N

We thus have the ratio

P(AN) ;e—z(AN)2/N'

v =paN=—o @

The entropy of the most probable macrostate is the highest entropy of any individual
macrostate, but it is still not the maximum possible entropy that corresponds to true
thermodynamic equilibrium. The maximum possible entropy obtains if the system is
freely allowed to visit all microstates — and hence also all macrostates — in accordance
with Eq. (1), including, albeit typically with much smaller probability than the most
probable macrostate, macrostates that are far removed from the most probable one. It
is this distribution, and not the most probable macrostate alone, that characterizes true
thermodynamic equilibrium [2,3].

Now let a piston be inserted into our box, such that there are exactly N/2 gas mole-
cules of either side of the piston. Let the length of our box be L. If the piston (whose
width is, for simplicity, taken to be negligible compared with L/2) is centered at, say,
AL to the right of the center of the box, that is, at g -+ AL from the left edge of the box,
we have for the expectation value of the number of gas molecules in the left half of the
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box, that is to the left of L/2,

<Nleft> = - <AN>

i%mﬁﬁ}i(ﬁ>

2
N (L+2AL\"' N |, 2AL -
2 L 2 L
. N 2AL
Hence, AL
(AN) = NT. (6)

(AN) should not be confused with AN. AN obtains in the absence of a piston and has
a unique value in accordance with Eqgs. (1)—(4) and the associated discussions, while
(AN) is the expectation value of AN corresponding to our piston being centered at AL
to the right of the center of the box, that is, at % + AL from its left edge. Since NV is
large, we can, with negligible error, consider Ry of Eq. (4) to be the same function of
(AN) as it really is of AN. Hence, we can apply Eq. (6) to Eq. (4) and obtain, as an
alternative to our expression for Ry, the ratio 17, of the probability that the piston will
be centered at AL to the right of the center of the box and at % + AL from the left edge
thereof to the probability that it will be at the exact center of the box at L /2,

___P(AN) ~ _—2(AN)2/N - _—2(AN)2/N
Bv=panv=0 ¢ —¢
o P(AL) . on(ar)
_RL_P(AL:())_e . (7
Of course, the result of Eq. (7) can also be derived directly via [5]
(L aL) (L -an)]Y N2
5 5 [(L +2AL) (L — 2AL)]
(3) L
L 2 i
- N, - N,
L? —4(AL)? 2 4(AL)? 2
o e e
= o 2N(3)” (8)

The Gaussian approximation in the last line of Eq. (8) is already fairly accurate even
for NV as small as 10, and very rapidly approaches perfect accuracy for large N. The
direct derivation in accordance with Ref. [5] and Eq. (8) has the advantage of avoiding
the approximation of employing expectation values, namely (N ) and (AN), that is
required in the derivation of Egs. (5)—(7).

Corresponding to the most probable macrostate AN = 0 (AN being a discrete
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random variable) in the absence of a piston, that in the presence of a piston, AL/L =0
(AL/L being a continuous random variable), should be taken of width §i/L (§1/2L on
either side of L/2) so as to have the same probability, that is, the probability given by
Eq. (2). The Gaussian probability density p for AL/L integrated to unity equals Ry,
times a normalization factor of (2N /7)"/? [4]. Thus we have

1/2 )
o= (ﬂ) V() ©)

™

which near the peak of the Gaussian simplifies to

1/2 2
pig) [HN(&) (10)
T L
Setting
S5l S5l
2r AL 2L L
/_,ﬁpd(T):?/o w(T)
ON\ Y2 [ar AL\? AL
:2(7) : ”N(T) d(?)
(NP8l 2N (8N
N T oL, 3 \2L
(2NN AL, 2N (e
N T 2L 3 \ 2L
9 1/2
yields
sl 1
e (12)

Since the system must be in some macrostate with probability of unity after being
released from constraint to the most probable macrostate, this release of constraint cor-
responds to an increase in entropy of

N\Y? 1 N
AS = kpln :kBln<L> zékBlnﬂ—, (13)

1 :
P(AN =0) 2

where kp is Boltzmann’s constant. Thus, AS' is the negentropy of the system when
constrained to be in its most probable macrostate. Since our system is in thermal equi-
librium with a heat reservoir at temperature 7', being released from this constraint yields
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extractable work of . N
W =TAS = “ksTln % (14)

Our results of Eqgs. (13) and (14) strictly obtain for the discrete random variable AN
(without piston), but they also obtain for the continuous random variable AL /L (with
piston) if macrostates, and in particular the most probable macrostate, of the latter are
effectively discretized in accordance with Eqgs. (9)—(12) and the associated discussions.

The work W is extractable as follows. Let the center of mass of a piston in our
box be localized to within +£4//2 of the exact center of the box, that is, to within
L/2+61/2, where §l ~ L/N in accordance with Eq. (12). Thus, 6/ is much smaller than
the fluctuations in the position of the piston resulting from typical, say, one-standard-
deviation, fluctuations in the distribution of gas molecules within the box, the latter
being ~ L/N'/2 [5]. Thus, the piston initially divides the box into left and right halves.
Let there be exactly N/2 gas molecules in each half of the box, on either side of the
piston. Now, release the piston so that it can push on stops both to its left and to its right,
thereby doing work. With the piston at the center of the box, at L./2, the gas pressure
on either side of the piston is equal, and hence the pressure difference between its two
sides is zero, according to thermodynamics, that is, on the average. Thus, according to
thermodynamics, the piston can do strictly zero work. But, according to statistical me-
chanics, fluctuations occur about the average value, with the pressure difference some-
times slightly positive, pushing the piston to the right, and sometimes slightly negative,
pushing it to the left. Thus, according to statistical mechanics, the piston can do positive
work, albeit only a small amount of it. Once pushed to the right of the center of the box,
further fluctuations pushing it even further to the right become ever less probable (and
of course similarly once pushed to the left). Nevertheless, during the piston’s delocal-
ization from within / to within a larger region nél = nL /N, where n > 1, all of these
pushes from fluctuations will do work on the piston, which in turn will transfer this work
to the stops. Strictly, to extract all of the work W given by Eq. (14), ndl must equal L
less the width of the piston (which for simplicity we take to be negligible compared with
L/2), but for, say, n as small as 10, very nearly all of TV is extractable, because fluctu-
ations in the position of the piston corresponding to n > 10 have negligible probability
of occurrence [5].

Also, work W' = kgT Inn will be obtained from the delocalization of the piston
itself considered as a one-molecule ideal gas. But, in order to complete a cycle, work
W' must then be expended to localize the piston to within 6//2 at the center of the box,
that is, to within L/2 £ 61/2, so W' contributes nothing to the our yield or cost.

Can we simply (re)localize our piston to within L/2 + 6//2, and then obtain the
net work W as given by Eq. (14) again? If so, we could violate the second law of
thermodynamics, even if only weakly. The important question is: In order to (re)localize
our piston to within L /2 + §1/2, must we expend only work W', or work W + W'? If
the former, then we can violate the second law, albeit only weakly; if the latter, then we
cannot.

Alas, at least prima facie, it seems that we cannot. For we have paid for the work W
with the loss of the information that there are exactly N/2 molecules in each half of the
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box, and with the loss of information associated with delocalization of the piston. When
we try to (re)localize our piston to within +6//2 of the center of the box, there could be
a, say, two-standard-deviation magnitude fluctuation in the distribution of gas molecules
into the left half of the box. Then our piston will be pushed preferentially to the right,
and much more work will be done against the right stops than against the left stops.
Thus, the “tightness” settings of the stops corresponding to there being exactly N/2
molecules in each half of the box are no longer the optimum settings for the extraction
of work. We must then either determine the new initial AN and readjust the tightness
settings of the stops accordingly, or (with the piston temporarily removed from the box)
ensure that AN = 0 again, that is, that there are again exactly N/2 gas molecules in
each half of the box. And doing either is not free. Whether the cost is attributed to
observation [6] or to erasure of memory [7], it is equal to the net work W as given
by Eq. (14). Thus we just barely break even, and this is assuming perfect, reversible,
operation. With any irreversibility, which obtains in any real system but which we did
not consider, we do not just barely break even — we lose.

III. RELATION TO THE ADIABATIC PISTON PROBLEM

The piston considered in Sec. I is diathermal, that is, in an isothermal environment at
temperature 7. It is interesting, however, to consider the relationship of our discussions
in Sec. II to the adiabatic piston problem [8]. For an adiabatic piston, the fluctuations in
piston position are much larger, in fact M /m times larger, than in the diathermal case,
where M is the mass of the piston and m is the mass of each gas molecule [§]. But
they still obey a binomial (for all practical purposes, for N 2 10, Gaussian) distribution
whose maximum is at the center of the box, that is, at L./2, albeit one whose standard
deviation is M /m times larger than in the diathermal case [8]. In the adiabatic case, the
pressure of the gas on either side of the piston remains essentially constant irrespective
of piston position, but cannot remain exactly constant irrespective of piston position,
because the binomial (or Gaussian) peak at L /2 implies that there must be, on the aver-
age (despite the large fluctuations about the average), some restoring force towards L /2,
albeit one only m /M as strong as in the diathermal case.

Also, equality of pressures on either side of the piston irrespective of its position
requires, in accordance with the ideal gas law, that the absolute temperatures of the gas
on the left and right sides of the piston must be proportional to the respective volumes
occupied thereby at any given instant of time [8]. But it is difficult to understand how
this obtains physically. The gas on the side of the piston occupying the larger volume
following the completion of a fluctuation away from the average must have done work
in compressing the gas on the side occupying the smaller volume, so one would expect
that the gas on the side occupying the larger volume must, at the completion of this
fluctuation, be cooler than that on the side occupying the smaller volume. But then, of
course, the gas pressures on both sides of the piston could not be equal — the pressure
must then be larger on the side occupying the smaller volume, which would then tend to
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return the piston towards L /2, albeit only m /M times as strongly as in the diathermal
case.

As has been emphasized, our initial state, wherein the piston is localized to within
L/2 4 61/2, is not the state of maximum entropy and zero extractable work that corre-
sponds to true thermodynamic equilibrium. It is the most probable (discretized) macrostate,
but as has been emphasized, the most probable macrostate alone is not the state of
maximum entropy and zero extractable work — the distribution over all accessible
macrostates is. The entropy increases once the piston is released and allowed to wander
away from L/2 + §1/2, and hence information regarding its position is lost. Since the
piston wanders much further, and hence suffers much greater delocalization, in the adia-
batic case than in the diathermal case [8], this entropy increase is considerably larger in
the former case than in the latter, and hence so would be the work required to (re)localize
the piston to within L/2 + §1/2. Thus, an initial state wherein the piston is localized to
within L /24 61 /2 is much further removed from true thermodynamic equilibrium in the
adiabatic case than in the diathermal case. Hence, the thermodynamic cost of initially
preparing the system, that is, of initially localizing the piston to within L/2 + §1/2, is
considerably larger in the adiabatic case than in the diathermal case, and this cost must
be accounted for. It is not certain if the adiabatic piston problem is or is not thereby re-
solved without requiring a violation of the second law of thermodynamics. But, in any
case, perhaps a formulation of the second law in terms of work [8], supplementing those
in terms of entropy, may be helpful in the study, and possibly even in the resolution, of
the adiabatic piston problem.
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APPENDIX: THE 2-MOLECULE SYSTEM

Up until now, we have assumed that /V is large enough that the Gaussian approxima-
tions in Egs. (1), (3), (4), (7), and (8) are valid. In this Appendix, we consider /V so small
that these Gaussian approximations are invalid, specifically, the smallest possible even
N, namely, N = 2. While the N = 2 case reveals no new principles, it nevertheless
displays some interesting features.

For N = 2, we have, without a piston in our box,

P (AN =0) =1/2. (15a)
P(AN ==+1) = 1/4. (15b)

With a piston therein, and with exactly N/2 = 1 molecule on either side of the piston,
we have

L (LML) (EAL) (L+2A1)(L-2AD)

(5)? ?
2
L2 —4(AL)? AL\?
_T_1_4(T) : (16)
Thus normalization
1/2 AL 1/2 ALN?| (AL
() o L () ) (F)
_1/2 AL —1/2 L L
1/2 ALN?| (AL
ol () ] (5)
0 [ L L
2
= Z = 17
nxs (17)
yields a normalization factor of
3
= — 1
n=73 (18)
and hence a probability density of
3 AL\?
=—|1—-4|— 1
p=3 [ ( > ) (19)

Corresponding to a most probable macrostate with P (AN = 0) = 1/2, in accordance
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with Eq. (15a), we set [similarly to Egs. (11) and (12)]

oL

3 [z AL\ AL 2L AL\? AL
2 1—4(==) |d(==) = 1—4(==) |a ==
2/ 8 (L) <L) 3/0 <L> (L)

4 3 4 2 1
[ ey e[ agay sa 1 20
2 3 \2L 2L 3\ 2L 2L 2
whence 51 .
— . 21
773 (21)

Note that, for the N = 2 case, diathermal and adiabatic fluctuations are of com-
parable magnitudes. Also note that, for the N = 2 case, the relative negentropy, that
is, the negentropy per molecule, and also the extractable work per molecule, is very
large for even for a diathermal system constrained to its most probable macrostate. The
absolute negentropy and extractable work corresponding to a diathermal system be-
ing constrained to its most probable macrostate increases with increasing N, but only
logarithmically [recall Egs. (13) and (14)]. Thus, vastly larger fofal most-probable-
macrostate negentropy and extractable work obtains if our diathermal /N-gas-molecule
system is divided into N/2 2-molecule systems (for simplicity, let N/2 be even, which
then of course automatically implies that NV is also even).
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