
Please post any and all homework or other textbookstyle problems in one of the Homework & Coursework Questions...

Feb2313 09:23 AM
micromass

1 
39,006 
I'm whacked outta solving these problems just hanging around for more than 2 hours for each question but can't solve...

Jul709 07:05 PM
slider142

9 
1,068 
Hey there, I was trying to check my calculations of one laplace tranformation and I needed to know a limit: f(x) =...

Jan3012 01:21 PM
DemoniWaari

2 
781 
Hey guys,
My cousin came over and was talking about his geometry class and it got me to derive 2*Pi*r and Pi*r^2...

Apr309 06:30 PM
MrJB

1 
1,884 
What free program (or online applet...) is there that I can use to numerically calculate limits and integrals...

Mar1808 11:35 AM
daniel_i_l

0 
1,231 
Lim x>2^+ (1/x1/2)
Please help im having trouble taking this limit

Apr605 07:55 PM
dextercioby

19 
6,893 
I have worked out the limit as x tends towards +infinity for cos(1/x) to be 1, as cos (1/infinity) would be cos(0)...

Dec509 05:20 PM
grizz45

2 
837 
I was just wondering for the limit comparison test does it matter which function is on the top and bottom?

Oct912 12:04 AM
MarneMath

1 
830 
From first principles,
\underset { x\rightarrow { 0 }^{ + } }{ lim } x=1\\ \underset { x\rightarrow { 0 }^{  }...

Nov112 01:57 PM
tahayassen

4 
724 
Is there a limit to the number of different, regular ngons comprising a uniform polyhedron?

Mar2208 02:08 AM
Loren Booda

0 
893 
Is there a limit to the number of differing, regular ngons that comprise a uniform polyhedron?

Mar2208 02:16 AM
Loren Booda

0 
1,021 
Let A\subset X be a subset of some topological space. If x\in\overline{A}\backslash A, does there exist a sequence...

Dec2307 09:47 PM
gel

13 
2,094 
hi ,
1.)how do I find the limit of (x! e^x) / (x^x *x^1/2) as x tends to infinity ?
2.)and is f(x)= x! a...

Jul3005 11:13 AM
TenaliRaman

8 
1,180 
how do you find the limit of this:
...

Oct2412 09:40 PM
haruspex

5 
2,463 
I kind of know what limits are, or at least believe I do: I think that a limit of a sequence is just an...

Aug2514 06:50 PM
Korisnik

6 
344 
I want to calculate the following:
\displaystyle\lim_{k\to\infty}\frac{n_k}{d_k}
where,
n_0 = 2

Sep809 12:13 PM
arildno

4 
728 
I was wondering someting that is so simple that it baffled me...
When I have the equation
a x^2+b x+c=0
this...

Jul2204 04:21 AM
Galileo

5 
7,133 
I just wanted to know why the limit of arctanx as x approaches infinity is \frac{\pi}{2}. It doesn't make any sense to...

Mar2809 03:16 PM
arildno

6 
21,460 
Hi
The source coding theorem says that one needs at least N*H bits to encode a message of length N and entropy H....

Apr509 11:07 AM
gop

4 
937 
Yesterday I thought of a math problem, and it seems very simple, as I assume the solution is, and I want to know the...

Sep1110 01:24 AM
Hurkyl

1 
778 
Let f(x) and g(x) be functions.
Then if limit of f(x)/g(x) = 1. That implies lim f(x) = lim g(x) right?
...

May2405 06:35 PM
whozum

7 
9,148 
Hi,
I don't know how to analyze the following, but I am wondering whether there is a way to determine whether a...

Oct2513 07:19 PM
elementbrdr

6 
721 
What is the limit of this
thx.

Jul606 08:21 PM
Robokapp

11 
1,257 
Can someone tell me how to show that the value of
x/
approaches 1/r^2 when x approaches infinity? Cant figure...

Dec2805 05:48 PM
Repetit

3 
1,671 
Hello.
I have been trying to find this limit:
Lim as x > 1 of (sin((1x)/2)*tan(Pi*x/2))
Of course I dont...

Dec812 11:19 AM
mfb

1 
600 
I have been reading through Schaum's and came across a limits question that i cannot figure out. I thought it had no...

Jun1207 03:10 AM
eprjenkins

5 
1,169 
so i understand how to resolve a limit at x>oo, but from a conceptual standpoint, i do not get it. for example, ...

Feb2409 12:20 PM
HallsofIvy

7 
1,088 
Hi,
Consider a hypothetical. An investor short* sells Stock A for $100 and uses that money to buy Stock B for $100....

Jan2011 05:55 AM
AlephZero

10 
1,524 
I cant get the following limit to work:
lim(X>0) 1/(ix)*(exp(imx)  1 ) = m
I'm sorry for the poor notation. I...

Feb610 09:43 AM
student111

2 
2,165 
In order that that other thread can get locked, here's something for JonF et al (sans organic detritus).
Firstly,...

Mar3004 08:05 PM
Hurkyl

24 
2,342 
Greetings.
Let me first show how my teacher solves a limit.
For example, take :
Lim(x>6) (x+5)/(x3)
He takes the...

Sep603 04:10 AM
phoenixthoth

10 
4,199 
I have the following doubts. Please help me get through them.....
(1) Is there any difference between the terms...

Dec2711 09:26 AM
DivisionByZro

8 
1,590 
Thank you to those who replied to my previous post(I had a problem repling on that post). What I was after was a...

Oct811 10:53 PM
beartopper

0 
850 
1)We know this limit doesn't
\lim_{x\rightarrow\frac{2}{3}}\frac{2}{2+3x} exists
after substituting the value ot...

Jul909 06:19 AM
tinytim

1 
697 
\lim_{x\rightarrowy}\frac{sin{x}sin{y}}{xy}
so this is the question.
I'm here solving this problem you please...

Jul909 06:26 AM
tinytim

4 
808 
I understand that the limit as x > a for a polynomial function, f(x), is equal to f(a) because the function is always...

Sep2905 10:49 AM
HallsofIvy

7 
17,861 
When sketching a graph I'm told to assume that the expression:
f(x) =( e^x)/x
Tends towards the infinite as x...

Jan412 12:02 PM
tomwilliam

2 
754 
I was told that the limit of e^iwt as t> infinity is 1 or is at least modelled as 1. Can anyone tell me why this is?...

Oct2211 05:01 PM
schtruklyn

4 
8,088 
Hi everyone,
I am having a 'crisis of faith' in how the limits of an integral should change when you make a...

Jul913 09:45 AM
BruceW

2 
546 
Hi,
I'm having some trouble understanding what is meant when the limit of a summation is i<j. Does it mean the...

Nov407 12:37 PM
arildno

1 
3,280 
I'm stuck on how to approach the following problem.
lim_{x \rightarrow \infty} \sum_{j=0} ^x e^{j/x}
Does...

Feb610 08:59 AM
Apteronotus

5 
967 