Please post any and all homework or other textbookstyle problems in one of the Homework & Coursework Questions...

Feb2313 09:24 AM
micromass

1 
30,487 
I am reading Dummit and Foote Ch 15, Commutative Rings and Algebraic Geometry. In Section 15.1 Noetherian Rings and...

Oct3013 11:54 PM
Math Amateur

2 
397 
The two properties every linear transformation T: V > W has to satisfy is
T(u + v) = T(u) + T(v), for u,v in V (i)...

Feb1714 04:01 PM
jgens

4 
397 
Exist so much theory for find the eigenvules of a matrix (invariants, characteristic polynomials, algebraic formula...

Feb2414 01:57 PM
DrClaude

4 
397 
I am reading Dummit and Foote Ch 15, Commutative Rings and Algebraic Geometry. In Section 15.1 Noetherian Rings and...

Oct3013 10:52 PM
Math Amateur

2 
398 
Hi everyone,
I have a square matrix J \in \mathbb{C}^{2n \times 2n}...

Feb2714 11:57 AM
Sam1984

0 
398 
I have begun to learn about maximal elements from a linear algebraic perspective (maximal linearly independent subsets...

Jun1313 06:58 AM
HallsofIvy

1 
399 
Is any given finite semigroup isomorphic to some finite semigroup S that consists of some subsets of some finite group...

Jul2413 07:13 PM
micromass

4 
401 
In a linear regression with 1 independent variable, if X is always the same (let's call I am unlucky), but Y present...

Jun2613 03:57 PM
Number Nine

2 
402 
Hi everyone,
I would like to ask you something about vector spaces.
I have the following term:
S=dim(R(...

Aug213 10:19 AM
GoodSpirit

0 
403 
Here it is for those interested.
http://arxiv.org/pdf/1305.2897.pdf

May2813 08:47 AM
epsi00

0 
404 
Let's say I have a matrix M such that for vectors R and r in xycoordinate system:
R=Mr
Suppose we diagonalized it...

Jul2413 12:19 PM
mathsciguy

2 
404 
Hi,
Could anyone give me a proof for the following theorem?
Theorem : Ax=0 has a nontrivial solution iff det(A)=0...

Mar2714 06:47 AM
chogg

2 
404 
In "Quantum Computation and Quantum Information" by Nielsen & Chuang, on pp. 8889, applying basic statistical...

Mar1914 04:06 AM
nomadreid

2 
406 
Hi all,
I'm testing out a matrix solving program and while it checks out for 2x2/3x3/4x4 I would like to try it out...

Jun1213 06:12 AM
Kosh Naranek

1 
408 
If I have two square nonnegative primitive matrices where the PerronFrobenius Theorem applies how would I calculate...

Jul413 09:01 PM
Simon Bridge

2 
408 
http://img826.imageshack.us/img826/6069/kj13.png
The proof is showing that particular matrix ring is not left...

Oct2713 11:10 AM
Silversonic

0 
408 
Suppose we have
$$=if^c_{ab}Q^c$$
where Q's are generators of a Lie algebra associated a SU(N) group. So Q's are...

Jul2413 02:01 PM
vnikoofard

0 
411 
Suppose I have some functions ## \{ y,y_{1},y_{2},...y_{n} \} \subset C^{∞} ## and suppose I know that the Wronskian...

Jul3013 12:42 PM
Mandelbroth

1 
412 
I am reading Dummit and Foote (D&F) Section 15.1 on Affine Algebraic Sets.
On page 662 (see attached) D&F define a...

Nov213 09:37 AM
R136a1

1 
412 
Hi guys,
So as title states, how would one sketch Re(iz) = 3? And an explanation would be splendid.
This is what I...

Feb614 09:35 PM
JC3187

5 
412 
Friedberg proves the following theorem:
Let V and W be vector spaces over a common field F, and suppose that V is...

Jun1013 12:25 PM
micromass

1 
413 
Hello!
I ve come across with something called ' relative element of a vector'
Could you provide me a definition and...

Jul2513 04:27 PM
Stephen Tashi

1 
413 
Hi all,
Im trying to think of a way of generating nonintersecting randomly oriented cylinders within a unit cell...

Feb1214 07:06 AM
FactChecker

9 
413 
I was developing a pythagorean theorem proof based on the cross product of two vectors..Below is my final...

Feb114 09:03 PM
FactChecker

3 
414 
When I start to read the the article called "symmetric bilinear forms", I face the following sentence. But I don't...

Aug413 11:49 PM
micromass

3 
415 
I'd like to figure out why
f(x) = x^n  r e^{i \theta} = \prod_{j = 0}^{n  1} ( x  r^{1/n} e^{i \theta / n} e^{2...

Feb914 03:33 PM
AlephZero

2 
416 
Let's say we randomly select integers to construct a potentially infinite number, for example 3588945.... There is a...

Apr414 12:59 PM
SteveL27

2 
416 
I have some question guys
i have four points in the x,y plane in cartesian coordinates.
A (Ax,Ay)
B(Bx,By)
...

Jun1713 05:18 AM
Fredrik

5 
417 
delete please

Feb614 02:24 PM
pasmith

1 
417 
Using the given information, is it possible to solve the new travel direction of the smiley face? To clarify, I am...

May2913 06:48 PM
Simon Bridge

6 
418 
I have some reason to believe that
\det(\textrm{id} + AB) = \det(\textrm{id} + BA)
is true even when AB and...

Jun2013 10:47 PM
jostpuur

2 
418 
For another thread http://www.physicsforums.com/showthread.php?p=4420542 , I want to give simple motivations for the...

Jun2313 01:19 AM
Stephen Tashi

3 
418 
I was having a quick look at Isaacs : Algebra  A Graduate Course and was interested in his approach to Noetherian...

Oct3113 01:02 AM
R136a1

3 
418 
Wasn't sure whether to post this in the computing section or not but here goes anyway,
I have n number of 2d...

Feb514 07:14 AM
Jeff.Nevington

2 
418 
For a linear transformation to be invertible, is it a requirement that the domain and codomain be the same vector...

Jun1113 08:26 AM
HallsofIvy

3 
419 
Hi,
I'm getting a bit confused about the adjoint representation. I learnt about Lie algrebras using the book by...

Aug213 03:24 PM
AlbertEi

0 
419 
0\rightarrow A\rightarrow B\rightarrow C\rightarrow 0 is a short exact sequence if the image of any morphism is the...

Dec1213 01:07 PM
gentsagree

2 
419 
Hi all!
I have no application in mind for the following question but it find it curious to think about:
Say that...

May3113 06:43 PM
mfb

1 
420 
Using this coordinate system and writing the relationships:
\vec{\rho}\;'=R^{1}(\phi)\vec{\rho}
\begin{bmatrix}...

Jan2714 09:18 AM
Jhenrique

2 
421 
Not sure if this is the right subforum.
This is technically a signal processing question, but it edges on proving...

Apr714 11:24 AM
jbunniii

12 
421 