- **Calculus & Beyond Homework**
(*http://www.physicsforums.com/forumdisplay.php?f=156*)

- - **If K is a subgroup of G of order p^k, show that K is subgroup of H**
(*http://www.physicsforums.com/showthread.php?t=228678*)

If K is a subgroup of G of order p^k, show that K is subgroup of H1. The problem statement, all variables and given/known dataLet |G| = (p^n)m where p is prime and gcd(p,m) = 1. Suppose that H is a normal subgroup of G of order p^n. If K is a subgroup of G of order p^k, show that K is subgroup of H. 2. Relevant equations3. The attempt at a solutionOkay, I wonder if there is more I need to do, or if I need to prove they are finite. I feel like I am missing something...but here is what I got p^k has to be less than p^n because if p^k was bigger than p^n then p^k would not divide the order of G because p and m are relatively prime and K could not be a subgroup of G. The order of a subgroup must divide the order of the group. Both H and K are subgroups of G, they both are closed under the same operation as G, and because n>k, p^k divides p^n and thus because K is closed under the operation of H and K's order divides the order of H, K must be a subgroup of H. Thanks |

All times are GMT -5. The time now is 02:39 AM. |

Powered by vBulletin Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.

© 2014 Physics Forums