Differential geometry: coordinate patches
1. The problem statement, all variables and given/known data
For a coordinate patch x: U>[tex]\Re^{3}[/tex]show that[tex]u^{1}[/tex]is arc length on the [tex]u^{1}[/tex] curves iff [tex]g_{11} \equiv 1[/tex] 3. The attempt at a solution So i know arc legth of a curve [tex]\alpha (t) = \frac{ds}{dt} = \sum g_{ij} \frac {d\alpha^{i}}{dt} \frac {d\alpha^{j}}{dt}[/tex] (well thats actually arclength squared but whatever). But im not sure how to write this for just a [tex]u^{1}[/tex] curve. A [tex]u^{1}[/tex] curve throught the point P= x(a,b) is [tex]\alpha(u^{1})= x(u^{1},b)[/tex] But i have no idea how to find this arclength applies to u^1 curves. Furthermore i know some stuff about our metric [tex]g_{ij}(u^{1}, u^{2})= <x_{i}(u^{1}, u^{2}), x_{j}(u^{1}, u^{2})[/tex] But i do not know how to use that to show that u^1 must be arclength but here is what i have so far: [tex]g_{11}(u^{1}, b)= <x_{1}(u^{1}, u^{2}), x_{2}(u^{1}, u^{2})>[/tex] We know that [tex]x_{1}= (1,0)[/tex] and that is as far as i got :/ Any help appreciated. 
Re: Differential geometry: coordinate patches
bump, i still need help on this

Re: Differential geometry: coordinate patches
one last bump, can anybody help me on this?

All times are GMT 5. The time now is 09:50 PM. 
Powered by vBulletin Copyright ©2000  2014, Jelsoft Enterprises Ltd.
© 2014 Physics Forums