View Single Post
May11-09, 02:37 PM
Sci Advisor
PF Gold
marcus's Avatar
P: 23,215
A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder
Adam G. Riess (JHU, STScI), Lucas Macri (Texas A&M), Stefano Casertano (STScI), Megan Sosey (STScI), Hubert Lampeitl (UPort), Henry C. Ferguson (STScI), Alexei V. Filippenko (UCB), Saurabh W. Jha (Rutgers), Weidong Li (UCB), Ryan Chornock (UCB), Devdeep Sarkar (UCI)
60 pages, 15 figures Accepted for Publication, ApJ. This is the second of two papers reporting results from a program to determine the Hubble constant to 5% precision from a refurbished distance ladder based on extensive use of differential measurements
(Submitted on 5 May 2009)
We report observations of 240 Cepheid variables obtained with the Near Infrared Camera (NICMOS) through the F160W filter on the Hubble Space Telescope (HST). The Cepheids are distributed across six recent hosts of Type Ia supernovae (SNe Ia) and the "maser galaxy" NGC 4258, allowing us to directly calibrate the peak luminosities of the SNe Ia from the precise, geometric distance measurements provided by the masers. New features of our measurement include the use of the same instrument for all Cepheid measurements across the distance ladder and homogeneity of the Cepheid periods and metallicities thus necessitating only a differential measurement of Cepheid fluxes and reducing the largest systematic uncertainties in the determination of the fiducial SN Ia luminosity. The NICMOS measurements reduce differential extinction in the host galaxies by a factor of 5 over past optical data. Combined with an expanded of 240 SNe Ia at z<0.1 which define their magnitude-redshift relation, we find H0=74.2 +/-3.6, a 4.8% uncertainty including both statistical and systematic errors. We show that the factor of 2.2 improvement in the precision of H0 is a significant aid to the determination of the equation-of-state of dark energy, w = P/(rho c2). Combined with the WMAP 5-year measurement of OmegaM h2, we find w= -1.12 +/- 0.12 independent of high-redshift SNe Ia or baryon acoustic oscillations (BAO). This result is also consistent with analyses based on the combination of high-z SNe Ia and BAO. The constraints on w(z) now with high-z SNe Ia and BAO are consistent with a cosmological constant and improved by a factor of 3 from the refinement in H0 alone. We show future improvements in H0 are likely and will further contribute to multi-technique studies of dark energy."