View Single Post
LmidgitD
#3
Sep13-09, 01:12 PM
P: 1
Ok, so after expanding:
ln(q+N)!-lnq!-lnN!
and canceling a coupel N's and q's I get:

(q+N)ln(q+N)-qlnq-NlnN

So I applied a few ln rules to get:

[tex]ln(q+N)^{q+N)}[/tex]-[tex]lnq^{q}[/tex]-[tex]Nln^{N}[/tex]

Then simplifying:

ln([tex](q+N)^{(q+N)}/q^{q}[/tex]-[tex]lnN^{N}[/tex]

But when I try to simplify again I come up with:

ln([tex](q+N)^{(q+N)}N^{N}/q^{q}[/tex] - [tex]lnN^{N}[/tex]

Which I don't believe is right, but even if it was, how do I go about recovering the 2pi n the denominator?