View Single Post
huyichen
huyichen is offline
#1
Oct10-10, 01:04 AM
P: 29
Suppose M and N are smooth manifold with M connected, and F:M->N is a smooth map and its pushforward is zero map for each p in M. Show that F is a constant map.


I just remember from topology, the only continuous functions from connected space to {0,1} are constant functions. With this be useful in solving the problem?
Phys.Org News Partner Science news on Phys.org
Lemurs match scent of a friend to sound of her voice
Repeated self-healing now possible in composite materials
'Heartbleed' fix may slow Web performance