View Single Post
dane502
#1
Mar7-11, 05:21 AM
P: 21
Two days ago I posted a similar post in the "Calculus & Beyond Forum", but I guess that this forum is more appropriate - any admin should correct me if I am wrong..

1. The problem statement, all variables and given/known data

I am trying to solve the follwing linear program


[tex]
\max \qquad 4x_1+x_2+3x_3
[/tex]
[tex]
\text{s.t }\qquad x_1+4x_2\qquad\,\leq1
[/tex]
[tex]
\text{ }\qquad \quad3x_1-x_2+x_3\leq3
[/tex]

3. The attempt at a solution
Using the simplex method and a tableau (negated objective function in the last row, right-hand side of constraints in the last column)
[tex]

\begin{matrix}
\textcircled{1}&4&0&1&0&1\\
3&-1&1&0&1&3\\\hline
-4&-2&-3&0&0&0
\end{matrix}
\rightarrow
\begin{matrix}
1&4&0&1&0&1\\
0&-13&\textcircled{1}&-3&1&0\\\hline
0&14&-3&4&0&4
\end{matrix}
\rightarrow
\begin{matrix}
1&\textcircled{4}&0&1&0&1\\
0&-13&1&-3&1&0\\\hline
0&-25&0&-5&3&4
\end{matrix}
\rightarrow
\begin{matrix}
1/4&1&0&1/4&0&1/4\\
13/4&0&1&1/4&1&13/4\\\hline
25/4&0&0&5/4&3&41/4
\end{matrix}

[/tex]

From which I conclude that the optimal objective value is 41/4
and the optimal solution is (0,1/4,13/4).

Inserting the optimal solution in the objective function does NOT yield 41/4.
It yields 10. I know from the textbook that the correct answer is 10, so my solution is correct. Can anyone explain then why my objective value in the tableau is not?
Phys.Org News Partner Science news on Phys.org
Security CTO to detail Android Fake ID flaw at Black Hat
Huge waves measured for first time in Arctic Ocean
Mysterious molecules in space