View Single Post
*melinda*
#1
Sep11-05, 06:52 PM
P: 86
Question:

Show that the Cauchy sequence .9, .99, .999,... is equivalent to 1, 1, 1...

My analysis book reads more like a novel than a math book, so unfortunately there are very few definitions, and the ones that are there are hidden in a mountian of text.
That said, I am curious about What it means to show equivalence between Cauchy sequences. I have a hunch that if I prove that they converge to the same limit, I will solve my problem. Any suggestions?
Phys.Org News Partner Science news on Phys.org
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker