## Mass...

Mass?

Mass is 4 dimensional:
$$dr_s = space.radius (m)$$ - 1 dimensional space
$$dA_s = space.area (m^2)$$ - 2 dimensional space
$$dV_s = space.volume (m^3)$$ - 3 dimensional space
$$dA_t = time.area (s^2)$$ - 2 dimensional time

Mass is the amount of force per acceleration: (Newton)
$$m = \frac{ dF}{da} = \frac{N s^2}{m}$$

Mass is the force fraction in time area per space dimension.
$$m = F \frac{ dA_t}{dr_s}$$

Mass is the amount of density in volume or density in space volume.
$$m = pV = pdV_s$$

Mass is the fractional energy amount per space-time areas: (Einstein)
$$m = \frac{ E}{c^2} = E \left( \frac{ dA_t}{dA_s} \right)$$

Mass is the per Gravitational fraction in a space volume per time area:
$$m = \frac{ r_s c^2}{G} = \left( \frac{ dr_s}{G} \right) \left( \frac{ dA_s}{dA_t \right)} = \frac{ }{G} \left( \frac{ dV_s}{dA_t \right)}$$

Gravitation is the per mass fraction in a space volume per time area:
$$G = \frac{ }{m} \left( \frac{ dV_s}{dA_t} \right)$$

Integral:
$$m^2 = \left( \frac{ E}{c^2} \right) ^2 = \frac{ dr_s E}{G}$$

Gravitational Energy is the gravitational space fraction in the fractional space-time squared areas:
$$E_g = dr_s \left( \frac{ c^4}{G} \right) = \frac{ dr_s}{G} \left( \frac{dA_s}{dA_t} \right) ^2$$

Gravitational Energy and Space-Time Areas and Volumes are space dimension Mass exchangable:
$$E_g = dr_s (1.210E+44 j*m^-1)$$

 PhysOrg.com physics news on PhysOrg.com >> Kenneth Wilson, Nobel winner for physics, dies>> Two collider research teams find evidence of new particle Zc(3900)>> Scientists make first direct images of topological insulator's edge currents

 Similar discussions for: Mass... Thread Forum Replies Introductory Physics Homework 1 Special & General Relativity 1 Introductory Physics Homework 1 General Physics 0