Register to reply

Surface Integral

by coverband
Tags: integral, surface
Share this thread:
coverband
#1
Jan22-08, 01:09 PM
P: 167
As you know surface integrals are integrated with respect to dS. We then tranform the integral into one in dxdy. Is this the end of the problem or must we calculate it for dxdz and dydz as well and if so do you add up all results at the end!?
Phys.Org News Partner Science news on Phys.org
Study links polar vortex chills to melting sea ice
Lab unveil new nano-sized synthetic scaffolding technique
Cool calculations for cold atoms: New theory of universal three-body encounters
JukkaVayrynen
#2
Jan22-08, 01:28 PM
P: 6
You can do it several ways. If you have some arbitrary surface, the trick is to project the surface to some simpler surface, for example the x-y-plane. With projection we have simpler integral in which we use dA, dA being infinitesimal surface element on our simpler surface, for example on the x-y-plane the area element is dx*dy (could be [tex]r dr d\phi[/tex] if we used polar cordinates).

You asked wether we calculate it for dxdz or dydz, the answer is: you have to use the plane on which the surface is projected on. If we have some surface f(x,y), we project it on the x-y-plane and this is almost always the case. So we have to evaluate only one integral, in this case one with dxdy.
coverband
#3
Jan22-08, 01:49 PM
P: 167
Thanks for reply


Just to clarify, if asked to evaluate
doub_int[f(x,y) dS]

We just solve in xy plane?

Thanks again...

JukkaVayrynen
#4
Jan22-08, 02:35 PM
P: 6
Surface Integral

Yes. Solve in x-y-plane. But the most important thing to remember is the projection! Let da be surface element on f(x,y) and dA a surface element on x-y-plane. Then we have a relation [tex]da = dA \sqrt{\frac{\partial f(x,y)}{\partial x}^2 + \frac{\partial f(x,y)}{\partial y}^2 +1}[/tex] (follows from the cosine of the angle between the surface normal and the x-y-plane normal). So when you're doing the surface integral you get [tex]\int f(x,y)da = \int f(x,y) \sqrt{\frac{\partial f(x,y)}{\partial x}^2 + \frac{\partial f(x,y)}{\partial y}^2 +1} dA[/tex]. For only the surface area you have similar formula, you just have [tex]\int da[/tex] and so on.
HallsofIvy
#5
Jan22-08, 04:05 PM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,569
More generally, one can have a surface in terms of any 2 parameters. If x= x(u,v), y= y(u,v), z= z(u,v), then we can write the "position vector" of any point on the surface as
[itex]x(u,v)\vec{i}+ y(u,v)\vec{j}+ z(u,v)\vec{k}[/itex].

The two derivatives [itex]\vec{r}_u= x_u\vec{i}+ y_u\vec{j}+ z_u\vec{k}[/itex] and [itex]\vec{r}_v= x_v\vec{i}+ y_v\vec{j}+ z_v\vec{k}[/itex] lie in the tangent plane and their lengths are the differentials of length in that direction. Their cross product, [itex]\vec{r}_u\times\vec{r}_v[/itex] is called the "fundamental vector product" and its length, times dudv, is the differential of surface area.

In particular, if z= f(x,y), this gives exactly what JukkaVayrynen said.


Register to reply

Related Discussions
Surface Integral Help Calculus & Beyond Homework 6
Surface Integral Calculus & Beyond Homework 2
Surface integral Calculus & Beyond Homework 11
Surface integral Calculus & Beyond Homework 21
Surface Integral Calculus & Beyond Homework 2