scalar product and isospace


by parton
Tags: isospace, product, scalar
parton
parton is offline
#1
Mar2-09, 03:52 PM
P: 84
In some textbooks you can find that a term
[tex] \vec{\tau} \cdot \vec{A}_{\mu} = \sum_{a=1}^{3} \tau_{a} \, A_{\mu}^{a} [/tex]
is called scalar product in isospace (where the tau's denotes the Pauli matrices and [tex]A_{\mu}^{a}[/tex] is a four-vector). But how can one call this "scalar" product. The product is a matrix and not a scalar. And the usual definition of a scalar product requires that the product has to be a scalar.

Or take another example: [tex] \gamma^{\mu} \, A_{\mu} [/tex] is called a scalar product of four-vectors in space-time. It is confusing. Could anyone explain that to me? Do we really have a scalar product (in a strict mathematical sense) or is it just a convention done by physicists?
Phys.Org News Partner Science news on Phys.org
Cougars' diverse diet helped them survive the Pleistocene mass extinction
Cyber risks can cause disruption on scale of 2008 crisis, study says
Mantis shrimp stronger than airplanes

Register to reply

Related Discussions
second Hermitian scalar product Calculus & Beyond Homework 0
Scalar Product of a diffrential. Calculus 1
The scalar product Precalculus Mathematics Homework 1
scalar product question Introductory Physics Homework 12