Register to reply

Scalar product and isospace

by parton
Tags: isospace, product, scalar
Share this thread:
parton
#1
Mar2-09, 03:52 PM
P: 84
In some textbooks you can find that a term
[tex] \vec{\tau} \cdot \vec{A}_{\mu} = \sum_{a=1}^{3} \tau_{a} \, A_{\mu}^{a} [/tex]
is called scalar product in isospace (where the tau's denotes the Pauli matrices and [tex]A_{\mu}^{a}[/tex] is a four-vector). But how can one call this "scalar" product. The product is a matrix and not a scalar. And the usual definition of a scalar product requires that the product has to be a scalar.

Or take another example: [tex] \gamma^{\mu} \, A_{\mu} [/tex] is called a scalar product of four-vectors in space-time. It is confusing. Could anyone explain that to me? Do we really have a scalar product (in a strict mathematical sense) or is it just a convention done by physicists?
Phys.Org News Partner Science news on Phys.org
NASA team lays plans to observe new worlds
IHEP in China has ambitions for Higgs factory
Spinach could lead to alternative energy more powerful than Popeye

Register to reply

Related Discussions
Second Hermitian scalar product Calculus & Beyond Homework 0
Scalar Product of a diffrential. Calculus 1
The scalar product Precalculus Mathematics Homework 1
Scalar product question Introductory Physics Homework 12