Register to reply 
As for the three body problem (the formula used, and the related areas) 
Share this thread: 
#1
Feb2512, 07:58 AM

P: 110

Could you let me know which formula is Newton's Gravitation Law used for the three body or n body problem in general?
Suppose there are [itex]n[/itex] objects with the masses [itex]m_{j}[/itex], [itex]j=1,2,3,\dots,n[/itex] and the displacement functions [itex]\mathbf{x}_{j}:\mathbb{R}\to\mathbb{R}^{3}[/itex] with initial conditions of [itex]\mathbf{x}_{j}(0),\dot{\mathbf{x}}_{j}(0)[/itex]. Then is the formula (1) [itex]m_{j}\ddot{\mathbf{x}}_{j}=G\sum_{i\neq j}\frac{m_{i}m_{j}(\mathbf{x}_{i}\mathbf{x}_{j})}{\left\mathbf{x}_{i}\mathbf{x}_{j}\right^{3}}[/itex] used, or (2) [itex]m_{j}\ddot{\mathbf{x}}_{j}=G\sum_{i\neq j}\frac{m_{i}m_{j}}{\left\mathbf{x}_{i}\mathbf{x}_{j}\right^{2}}[/itex] used? If the trend is to use (1), then why is it? And what is the trend in defining the formula of Newton's Gravitation Law when [itex]\left\mathbf{x}_{i}\mathbf{x}_{j}\right=0[/itex]? And is there any textbook (kind graduate or undergraudate textbook level) that teaches this area not by analytical method but by algebraic method, especially focusing on the concept of symmetries? Or should I just find papers to study this area in such a view? And could you let me know the (mathematical) areas (specifically the names of the areas) that are closely related to this problem? 


#2
Feb2512, 11:48 AM

P: 486

(2) is limited to onedimensional cases and for [itex]\left\mathbf{x}_{i}\mathbf{x}_{j}\right=0[/itex] there is no force



#3
Feb2512, 12:03 PM

P: 409




Register to reply 
Related Discussions  
Vibration related: Rigid body modes  Introductory Physics Homework  2  
Deflection of a solid body with different cross sectional areas  Classical Physics  3  
A formula related to multiplicative order  Linear & Abstract Algebra  5  
MONDrelated formula  Astronomy & Astrophysics  1  
Formula for a Body of Resolution  Mechanical Engineering  0 