Help! Covariant Derivative of Ricci Tensor the hard way.


by nobraner
Tags: covariant derivative, einstein tensor, ricci tensor
nobraner
nobraner is offline
#1
Mar3-12, 06:29 PM
P: 14
I am trying to calculate the covariant derivative of the Ricci Tensor the way Einstein did it, but I keep coming up with

[itex]\nabla_{μ}[/itex]R[itex]_{αβ}[/itex]=[itex]\frac{∂}{∂x^{μ}}[/itex]R[itex]_{αβ}[/itex]-2[itex]\Gamma^{α}_{μ\gamma}[/itex]R[itex]_{αβ}[/itex]

or


[itex]\nabla_{μ}[/itex]R[itex]_{αβ}[/itex]=[itex]\frac{∂}{∂x^{μ}}[/itex]R[itex]_{αβ}[/itex]-[itex]\Gamma^{α}_{μ\gamma}[/itex]R[itex]_{αβ}[/itex]-[itex]\Gamma^{β}_{μ\gamma}[/itex]R[itex]_{αβ}[/itex]

Any assistance will be much appreciated.
Phys.Org News Partner Science news on Phys.org
Lemurs match scent of a friend to sound of her voice
Repeated self-healing now possible in composite materials
'Heartbleed' fix may slow Web performance

Register to reply

Related Discussions
Help! Covariant Derivative of Ricci Tensor the hard way. Special & General Relativity 6
covariant derivative of stress-energy tensor Special & General Relativity 3
covariant derivative of riemann tensor Special & General Relativity 11
Covariant derivative of metric tensor Differential Geometry 3
why should the covariant derivative of the metric tensor be 0 ? Special & General Relativity 8