Register to reply 
Manifest Lorentz covariance 
Share this thread: 
#1
Nov1612, 11:17 AM

P: 6

My question is: what does "manifest" Lorentz covariance means for a field theory, as opposed to simply Lorentz invariance.
Thanks for the replies! 


#2
Nov1612, 11:37 AM

Sci Advisor
HW Helper
P: 11,915

I guess manifest stands for "explicit", meaning the use of spacetime fields which come from the finite dimensional representations of the Lorentz group (and generally SL(2,C)).
The classical theory of the electromagnetic field in vacuum is manifestly Lorentz covariant, if the Lagrangian density is written using spacetime tensors and covectors, i.e. [itex] \mathcal{L}= \frac{1}{4} F^{\mu\nu}F_{\mu\nu} [/itex]. 


#3
Nov1612, 01:37 PM

Sci Advisor
P: 2,193

Another way to think about it is that a manifestly lorentz covariant theory is one formed out of only lorentz scalars (all lorentz indices are contracted), and in which time and space are treated on equal footing.



#4
Nov1712, 11:58 AM

Sci Advisor
P: 903

Manifest Lorentz covariance
[tex]\partial_{a}F^{abc} = J^{bc} + \epsilon^{bcade}F_{ade}[/tex] is Lorentz covariant because it is equivalent to the tensor equation [itex]R^{bc}=0[/itex]. If there are NO indices or NO FREE indices (i.e. all indices are summed over) then we say that the expression is scalar or Lorentz invariant, examples [tex]T = \eta_{ab}T^{ab} + F^{ab}F_{ab} + \eta_{ab}\eta_{cd}T^{ac}F^{bd}[/tex] Sam 


#5
Nov2012, 12:24 PM

Sci Advisor
HW Helper
PF Gold
P: 2,007

Maxwell's equations in 3vector form are Lorentz invariant in that they are the same in any Lorentz system, but they are not 'manifestly' Lorentz invariant.
'Manifestly' Lorentz invariance means that the LI is obvious from the form of the equations. 


#6
Nov2112, 02:52 AM

P: 1,020




#7
Nov2112, 06:09 AM

Sci Advisor
PF Gold
P: 1,382

manifest as an adjective is defined as: clear or obvious to the eye or mind.
manifestly is the adverb form of the word.  what Meir Achuz posted. 


#8
Nov2112, 09:02 AM

P: 6

Thank you very much for all the replies!
It is still not clear to me if there could be Lorentzcovariance without it being "manifest" (or "explicit")? Any opinion would be appreciated! 


#9
Nov2112, 11:00 AM

Sci Advisor
HW Helper
P: 11,915

We generally use the term <covariance> in relation to tensor fields on a flat/curved 4D spacetime, so the 'manifest' attribute is automatic.



#10
Nov2612, 01:26 AM

Sci Advisor
P: 5,436

Of course there can be Lorentz covariance w/o manifest Lorentz covariance.
As explained above manifest 'covariance' of an expression is present when it is formulated in terms of 4tensors but w/o all indices being contracted, whereas 'invariance' means that all indices are contracted, i.e. the experession contains only Lorentzscalars. So the Maxwell equations formulated in terms of 4tensors are manifest covariant. But when you split them in E and Bfields etc. they are still covariant (why should they lose this property by rewriting them in a fully equivalent way?) but they are no longer manifest covariant (you don't see immediately that they are covariant, you have to check it explicitly). 


#11
Nov2612, 07:12 AM

Sci Advisor
P: 896

From a gaugetheory point of view you can make the following observation:
Take for example a photon, which has two polarizations. Naively, you would like to use some field with two degrees of freedom to describe such a photon. However, such a description is not "manifestly Lorentz covariant", because there is no representation in which fits your two degrees of freedom. The smallest representation is the vector representation, having four dof's. Gauge invariance however now cuts these four dof's down to two, which is exactly what you need. In that sense, you could say that gauge invariance helps you to describe photons in a "manifest Lorentzcovariant way". The subtle point is that field equations can more or less always be rewritten in "manifestly Xcovariant way", where X is some symmetry group, by using the socalled Stückelberg trick. This amounts to introducing extra fields to realize the symmetry. 


Register to reply 
Related Discussions  
Lorentz covariance and Noether's theorem  Special & General Relativity  3  
Lorentz covariance + Open string  Beyond the Standard Model  1  
Spacetime Translational Invariance vs(?) Lorentz Covariance  Special & General Relativity  1  
Question about lorentzcovariance of Dirac equation  Quantum Physics  2 