Register to reply

Lie algebra and differential equations

by MarkovMarakov
Tags: diff equation, lie algebra
Share this thread:
MarkovMarakov
#1
Nov25-12, 07:07 PM
P: 34
I am having trouble understanding a section in these notes: . It is on page 3. Section 3 -- Discretization of the Korteweg-de Vries equation. I don't understand why [tex]V_4=x∂_x+3t∂_t-2u∂_u[/tex] generates a symmetry group of the KdV. I see that it generates the transformation
[tex](x',t',u')= (x\exp(\epsilon), 3t\exp(\epsilon), -2u\exp(\epsilon))[/tex]
So [tex]u'_{t'}-6u'u'_{x'}+u'_{x'x'x'}=-{2\over 3}u_t-24\exp(\epsilon)uu_x-2\exp(-2\epsilon)u_{xxx}[/tex] How does this vanish (so that we get symmetry) given that [itex]u[/itex] satisfies the KdV?
Phys.Org News Partner Science news on Phys.org
'Smart material' chin strap harvests energy from chewing
King Richard III died painfully on battlefield
Capturing ancient Maya sites from both a rat's and a 'bat's eye view'

Register to reply

Related Discussions
Interest in Linear algebra and Differential Equations? Academic Guidance 4
Differential Equations or Linear Algebra? Academic Guidance 7
Linear Algebra or Differential equations? Academic Guidance 6
Linear algebra ordinary differential equations Calculus & Beyond Homework 11
Differential Equations vs Linear Algebra General Math 6