Register to reply

Spring connected to a block problem

by Zetor
Tags: None
Share this thread:
Zetor
#1
Dec18-12, 10:59 AM
P: 1
A block has an initial velocity of V and is connected to a damper and a spring like this:



The problem is to figure how far the spring vill maximally be compressed.

The damping is linearily proportional to the velocity of the block. It is possible to solve it with more or less standardised differential equations, I however want to try a different approach.

I want to solve by doing an energy equation like this:

mv^2/2 = kx^2/2 + [itex]\int cx' dx [/itex]

where x is the maximum compression and the integral the force from the damper integrated over the distance x. The speed over time is denoted as the derivate of x which equals speed. The constant C has such dimension that V(t)*c=F(t).
The second term is the potential energy stored in the spring.

However, since I dont know x' some trick needs to be done. Can this problem be solved by this approach?
Phys.Org News Partner Physics news on Phys.org
Step lightly: All-optical transistor triggered by single photon promises advances in quantum applications
The unifying framework of symmetry reveals properties of a broad range of physical systems
What time is it in the universe?

Register to reply

Related Discussions
In binary can we have a value with deci centi mili or more lower valued prefix? Computers 14
A countable basis vs. countably locally finite problem Calculus & Beyond Homework 2
Basic question: meaning of partition of R into maximal connected intervals General Math 1
Defining the term connected Differential Geometry 6