Register to reply 
Capacitors: How do they store energy ? 
Share this thread: 
#1
Jan1913, 10:29 PM

P: 247

A Capacitor stores energy when it is charging up but what is the intuition behind such a process ?
I, in fact, think that as electrons are being stored on one of the plate, positive charge is being build up on the other plate, an electric field is set up as there is a separation of charges, and this separation of charges would bring about a change in Potential energy of the system (the charges on the plate). According to Coulomb's law, this energy change must be negative. We can infer that the potential energy would really decrease ie become more negative. If that is true, how can a charged capacitor(with negative energy) do positive work while it discharges to power a bulb? (its absurd) 


#2
Jan1913, 11:25 PM

Mentor
P: 11,844

Separating charges would not cause them to develop a negative potential energy. It takes energy to separate them, and they give up energy whenever they return.



#3
Jan2013, 01:29 AM

P: 247

or maybe refer to some website which has done the math ? 


#4
Jan2013, 01:54 AM

Mentor
P: 11,844

Capacitors: How do they store energy ?
Also, could you explain how coloumbs law leads to negative potential energy in the case? Perhaps we can work this out step by step. 


#5
Jan2013, 07:27 AM

Sci Advisor
Thanks
P: 2,440

The math can help to understand what's going on here a lot (math is always good for understanding).
Let's first consider the most simple case of a twoplate capacitor with vacuum between its plates. Then you can think of charging it that you transport charges (say electrons) from one plate to the other. Due to charge conservation both plates carry the same but opposite charges. The charge transport needs energy because the more you charge the plates with opposite charges the larger the electric field between the plates becomes, leading to a force against further charge transport. Due to energy conservation, valid for the motion of charges in static electric fields, it doesn't matter, how you move the charge from one plate to the other, you always need the same energy to reach a certain charge state of the capacitor. Suppose one plate (sitting at [itex]x=0[/itex]) is already charged by an amount [itex]+Q[/itex]. Then necessarily the other plate (sitting at [itex]x=d[/itex]) parallel to the first plate has to carry the charge [itex]Q[/itex]. In the stationary state both charges are located on the surface of the plates inside the capacitor. Using Gauß's Law to a box parallel to the plates with one side within the conducting capacitor plate and one side inside the vacuum of the capacitor and the symmetry assumption (neglecting the edge effects of the finite plates, assuming that the distance [itex]d[/itex] between the plates is much smaller than their size) leads to an electric field [tex]\vec{E}=\frac{Q}{4 \pi \epsilon_0 A} \vec{e}_x,[/tex] where [itex]A[/itex] is the area of the plates. If you want to transport another infinitesimal amount of (negative!) charge [itex]\mathrm{d} Q[/itex] from the left plate to the right plate you have to do work against the Force [itex]\vec{F}=\mathrm{d} Q \vec{E}[/itex]. Since the path along which you carry the charge doesn't matter, you can take a straight line along [itex]\vec{E}[/itex] to get the work needed to do that: [tex]\mathrm{d} W=\mathrm{d} Q d E_x =\mathrm{d} Q d \frac{Q}{\epsilon_0 A}.[/tex] Since you start from an uncharged capacitor, to reach a total charge [itex]Q[/itex] you have to integrate this expression from [itex]0[/itex] to [itex]Q[/itex] wrt. [itex]Q[/itex]: [tex]W=\int_0^Q \mathrm{d} Q' \frac{Q'd}{\epsilon_0 A} = \frac{Q^2 d}{2 \epsilon_0 A}.[/tex] This we can easily rewrite in terms of the finally reached electric field within the capacitor: [tex]E_x=\frac{Q}{4 \pi \epsilon_0 A}.[/tex] Plugging this in our formula for the total work done when carrying the charges from one to the other plate in favor of [itex]Q[/itex], we find [tex]W=\frac{\epsilon_0}{2} E_x^2 A d.[/tex] Now [itex]A d[/itex] is the volume between the plates and [itex]\frac{\epsilon_0}{2} \vec{E}^2[/itex] is the energy density of the electric field! Thus the total work done to carry the charges from one plate to the other, is now stored as field energy in the electric field between the plates. If you put a dielectricum between the plates for not too high fields the response of this medium is that a polarization by slightly moving the bound charges inside the medium a little bit from their equilibrium place, which needs further work against the binding forces of these charges, which then is stored in this additional electric field, i.e., the polarization of the medium. This leads to an additional factor [itex]\epsilon_r[/itex] in the formula for the work: [tex]W=\frac{\epsilon_r \epsilon_0}{2} E_x^2 A d.[/tex] 


#6
Jan2013, 09:46 AM

Sci Advisor
PF Gold
P: 3,648

Nice job Van !!!
Maybe it'll help also to think about what goes on in a good dielectric vs in free space: Dielectric materials contain polar molecules, ie they have a + and a  end. Water is a good example. Pure water has a dielectic constant around 80, meaning that a capacitor with pure water between its plates would have 80X the capacitance of one with nothing but free space between them. (Water Molecules image courtesy of these guys: http://users.humboldt.edu/rpaselk/C1...C109_lec10.htm and it's an interesting page. In presence of an increasing electric field those polar molecules will begin to align with it, abandoning their preferred random orientations, and that takes mechanical work . Discharging the capacitor removes the field so the dielectric relaxes. That's why oil is used for severe duty AC capacitors  its slippery molecules don't heat up so much as they oscillate with the field. Plastic capacitors will melt in some applications where oil thrive, like commutating or snubbing SCR's. It's analogous to a mechanical spring. You doubtless noticed the similarity  Van's W = K E^2, for a spring it's K X^2 Doubtless this is oversimplified but it helped me in my early days. Now  if someone can explain why it is that empty space has a dielectric constant  i'd be much obliged. thanks, old jim 


#7
Jan2013, 09:52 AM

P: 247

between the two plates and no charge flows between this space ! Not during charging , not during discharging, Never ! Can you justify your claim ? Here is a portion of my notes : 


#8
Jan2013, 10:00 AM

Sci Advisor
PF Gold
P: 2,245

You obviously have to connect the two plates first, but once the capacitor is charged you can disconnect it and it will (in an ideal world) maintain its charge indefinitly.



#9
Jan2013, 10:12 AM

P: 5,632

The plates are 'connected' [prior post] via the electric circuit....
Think of a battery included, the battery provides chemical energy to do the work of moving the charges,,,,,this energy is then present in the field energy of the charged capacitor less any losses due to battery heating, resistance losses in the circuit,etc.. 


#10
Jan2013, 10:13 AM

P: 247

We don't have to complete the circuit ... 


#11
Jan2013, 10:44 AM

P: 5,632

that is what the two posts prior to yours are saying.



#12
Jan2013, 10:45 AM

Sci Advisor
PF Gold
P: 2,245




#13
Jan2013, 11:49 AM

P: 247

How does that prove the point that electrons can travel through air towards the other plate ? 


#14
Jan2013, 12:22 PM

P: 5,632




#15
Jan2013, 12:35 PM

P: 247

see the attachments, where it is clearly said that an electron moves one by one .... 


#16
Jan2013, 12:48 PM

Sci Advisor
PF Gold
P: 2,245

It's not.
Where does it say that the electron moves through the air? All it says is that you can calculate the stored energy by considering the amount of energy required to move electrons from one plate to the other. HOW they get from one plate to the other is irrelevant. 


#17
Jan2013, 01:23 PM

Sci Advisor
Thanks
P: 2,440

To answer Jim Hardy's question. Of course vacuum has no "dielectric" constant. The [itex]\epsilon_0[/itex] is in the equations from the choice of the units in the Systeme International (SI). From a physical point of view it's a very unnatural choice of units and sometimes leads to misunderstandings, because the constants [itex]\epsilon_0[/itex] and [itex]\mu_0[/itex] seem pretty mysterious to the beginner, because they are quite artificial to make the numbers easier to handle for everyday electrical engineering. The only fundamental constant in classical electromagnetism is the speed of light, indicating that Maxwell's electromagnetic theory is a relativistic theory. 


#18
Jan2013, 04:15 PM

Mentor
P: 17,227




Register to reply 
Related Discussions  
Capacitors connected in parallel to store a charge of 1.49 C?  Introductory Physics Homework  2  
Why Capacitors Store Half The Charge They Are Given  Introductory Physics Homework  3  
Where coil store energy?  Classical Physics  1  
Why use capacitors to store energy?  Classical Physics  5  
Store energy in lime CaO?  Chemistry  2 