Register to reply

Lower bound on det(A'DA) with A tall and D diagonal?

by Wrukproek
Tags: bound, detada, diagonal, tall
Share this thread:
Wrukproek
#1
Jan20-13, 03:06 PM
P: 1
Hi all,

I searched all other threads but was unable to find something useful. Here is my question: I am looking for a lower bound on

det(A'DA),

where A is a MxN with M>=N (possibly tall and skiny) and D is diagonal, non-negative and of dimension M. In particular, I am looking for ways that separate the properties of the matrices A and D in this expression. I know that for M=N, we can rewrite it as

(1) det(A'*D*A) = det(A)^2*det(D),

which is very helpful. However, for the more general case with M>N, which is the one I am interested in, I am unable to derive a useful equality or lower bound (which would also be fine) that separates the matrices A and D in (1). Upper bounds are not useful in my particular application.

Thanks a lot for your help,
Wrukproek
Phys.Org News Partner Science news on Phys.org
Bees able to spot which flowers offer best rewards before landing
Classic Lewis Carroll character inspires new ecological model
When cooperation counts: Researchers find sperm benefit from grouping together in mice

Register to reply

Related Discussions
Greatest lower bound/least upper bound in Q Calculus 1
Least upper bound/ greatest lower bound proof Calculus & Beyond Homework 4
Upper bound and lower bound Calculus & Beyond Homework 1
How do we find the least upper bound and greatest lower bound? Calculus & Beyond Homework 2
Upper bound/Lower Bound Set Theory, Logic, Probability, Statistics 10