Difference between the average position and the most likely position of a particle

In summary, The two parts (a) and (b) are not the same, as they are asking for different values of the particle's position. Part (a) is asking for the average position, which can be calculated by finding the area under the probability distribution curve. Part (b) is asking for the most likely position, which can be found by locating the maximum of the probability distribution curve. In order to solve these problems, integration by parts can be used to evaluate the integrals.
  • #36


malawi_glenn said:
no.

what is [tex] e^x e^x [/tex] ?

isn't it [tex] e^{x^2} [/tex]

?
 
Physics news on Phys.org
  • #37


TFM said:
isn't it [tex] e^{x^2} [/tex]

?
why should i then ask?

with your logic:

[tex] x^1x^1 = x\cdot x = x^{1^1} = x [/tex]

You should know this, algebra we learn when we are 15years old.
 
  • #38


I see now, when you multiply powers, they add up

So:

[tex] e^x * e^x = e^{2x} [/tex]
 
  • #39


TFM said:
I see now, when you multiply powers, they add up

So:

[tex] e^x * e^x = e^{2x} [/tex]


yup, and when you divide, you substract.

Now, after taking gabbagabbahey's remark into consideration, you can continue
 
  • #40


OKay, so:

[tex] \psi (x) = B \sqrt{x}e^{-\beta x} [/tex]

[tex] \psi (x)^* = B \sqrt{x}e^{-\beta x} [/tex]

Thus:

[tex] P(x) = B \sqrt{x}e^{-\beta x}B sqrt{x}e^{-\beta x} [/tex]

This gives:

[tex] P(x) = B^2 xe^{-2\beta x} [/tex]

This is the right version as I have carefully copied it from the Question.

So now:

[tex] <x> = \int^{\infty}_{0} x P(x) dx [/tex]

[tex] <x> = \int^{\infty}_{0} x B^2 xe^{-2\beta x} dx [/tex]

[tex] <x> = B^2\int^{\infty}_{0} x^2 e^{-2\beta x} dx [/tex]

Now:

[tex] f(x) = x^2, f'(x) = 2x [/tex]

[tex] g'(x) = e^{-\beta x}, g(x) = -\frac{1}{\beta} e^{-\beta x} [/tex]

Thus giving:

[tex] \frac{x^2}{\beta} - \int {-\frac{2x}{\beta}e^{-\beta x}} [/tex]

Okay so taking parts again:

[tex] f(x) = 2x, f'(x) = 2 [/tex]

[tex] g'(x) = e^{-\beta x}, g(x) = -\frac{1}{\beta} e^{-\beta x} [/tex]

Giving:

[tex] \frac{2x}{\beta} - \int{-\frac{2}{\beta}e^{- \beta x}} [/tex]

Now then the integral now gives:

[tex] \frac{2}{\beta}\int{e^{-\beta x}} [/tex]

which is:

[tex] -\beta x e^{-\beta x} [/tex]

And put all together:

[tex] <x> = \frac{x^2}{\beta} + \frac{2}{\beta}[\frac{2x}{\beta} + \frac{2}{\beta}[-\beta e^{-\beta x}]] [/tex]

Does this look okay?
 
  • #41


TFM said:
OKay, so:

[tex] \psi (x) = B \sqrt{x}e^{-\beta x} [/tex]

[tex] \psi (x)^* = B \sqrt{x}e^{-\beta x} [/tex]

Thus:

[tex] P(x) = B \sqrt{x}e^{-\beta x}B sqrt{x}e^{-\beta x} [/tex]

This gives:

[tex] P(x) = B^2 xe^{-2\beta x} [/tex]

This is the right version as I have carefully copied it from the Question.

So now:

[tex] <x> = \int^{\infty}_{0} x P(x) dx [/tex]

[tex] <x> = \int^{\infty}_{0} x B^2 xe^{-2\beta x} dx [/tex]

[tex] <x> = B^2\int^{\infty}_{0} x^2 e^{-2\beta x} dx [/tex]

Now:

[tex] f(x) = x^2, f'(x) = 2x [/tex]

[tex] g'(x) = e^{-\beta x}, g(x) = -\frac{1}{\beta} e^{-\beta x} [/tex]

Thus giving:

[tex] \frac{x^2}{\beta} - \int {-\frac{2x}{\beta}e^{-\beta x}} [/tex]

Okay so taking parts again:

[tex] f(x) = 2x, f'(x) = 2 [/tex]

[tex] g'(x) = e^{-\beta x}, g(x) = -\frac{1}{\beta} e^{-\beta x} [/tex]

Giving:

[tex] \frac{2x}{\beta} - \int{-\frac{2}{\beta}e^{- \beta x}} [/tex]

Now then the integral now gives:

[tex] \frac{2}{\beta}\int{e^{-\beta x}} [/tex]

which is:

[tex] -\beta x e^{-\beta x} [/tex]

And put all together:

[tex] <x> = \frac{x^2}{\beta} + \frac{2}{\beta}[\frac{2x}{\beta} + \frac{2}{\beta}[-\beta e^{-\beta x}]] [/tex]

Does this look okay?

No, you miss a factor e^-2x somewhere

and minus sign...

[tex] \frac{B^2}{4}(-2x(x+1)-1)e^{-2x} [/tex]

You have worked hard, so I give you this one ;-)

I leave for you to insert the "betas" att correct places
 
Last edited:
  • #42


Hmm, how do we get an [tex] e^2x [/tex]

?
 
  • #43


TFM said:
Hmm, how do we get an [tex] e^2x [/tex]

?

you interprent me wrong

it should be beta included
 
Last edited:
  • #44


Okay, I see what has happened, I forgot the 2 part iof teh exponential, and the B^2 taken out, so:

[tex] = B^2(\frac{x^2}{2\beta} + \frac{2}{1\beta}[\frac{2x}{1\beta} + \frac{2}{2\beta}[-2\beta e^{-2\beta x}]]) [/tex]

Does this look better?
 
  • #45


no ...

wrong wrong, start over again.

It is integration by parts two times, you could do it earlier, why not now?
 
  • #46


I cheated slightly and just stuck 2s in...

So properly this time:

[tex] P(x) = B^2 xe^{-2\beta x} [/tex]

[tex] B^2\int^{\infty}_{0} x^2 e^{-2\beta x} dx [/tex]

[tex]f(x) = x^2, f'(x) = 2x [/tex]

[tex] g'(x) = e^{-2\beta x}, g(x) = -\frac{1}{2\beta}e^{-2\beta x} [/tex]

Thus:

[tex] [-x^2\frac{1}{2\beta} - \int - 2x \frac{1}{2\beta}e^{-2\beta x}] [/tex]

[tex] [-x^2\frac{1}{2\beta} + \frac{1}{2\beta} \int 2xe^{-2\beta x}] [/tex]

Now:

[tex]f(x) = 2x, f'(x) = 2 [/tex]

[tex] g'(x) = e^{-2\beta x}, g(x) = -\frac{1}{2\beta}e^{-2\beta x} [/tex]

[tex] [-2x\frac{1}{2\beta}e^{-2\beta x} - \int -2\frac{1}{2\beta}e^{-2\beta x}] [/tex]

[tex] [-2x\frac{1}{2\beta}e^{-2\beta x} + \frac{2}{2 \beta} \int e^{-2\beta x}] [/tex]

And now:

[tex] \int e^{-2\beta x} = -2\beta e^{-2\beta x} [/tex]

Okay so far?
 
  • #47


TFM said:
I cheated slightly and just stuck 2s in...

So properly this time:

[tex] P(x) = B^2 xe^{-2\beta x} [/tex]

[tex] B^2\int^{\infty}_{0} x^2 e^{-2\beta x} dx [/tex]

[tex]f(x) = x^2, f'(x) = 2x [/tex]

[tex] g'(x) = e^{-2\beta x}, g(x) = -\frac{1}{2\beta}e^{-2\beta x} [/tex]

Thus:

[tex] [-x^2\frac{1}{2\beta} - \int - 2x \frac{1}{2\beta}e^{-2\beta x}] [/tex]

[tex] [-x^2\frac{1}{2\beta} + \frac{1}{2\beta} \int 2xe^{-2\beta x}] [/tex]

Now:

[tex]f(x) = 2x, f'(x) = 2 [/tex]

[tex] g'(x) = e^{-2\beta x}, g(x) = -\frac{1}{2\beta}e^{-2\beta x} [/tex]

[tex] [-2x\frac{1}{2\beta}e^{-2\beta x} - \int -2\frac{1}{2\beta}e^{-2\beta x}] [/tex]

[tex] [-2x\frac{1}{2\beta}e^{-2\beta x} + \frac{2}{2 \beta} \int e^{-2\beta x}] [/tex]

And now:

[tex] \int e^{-2\beta x} = -2\beta e^{-2\beta x} [/tex]

Okay so far?

[tex]
\int e^{-2\beta x} = -2\beta e^{-2\beta x}
[/tex]

is wrong

And also this one, why are you doing this wrong?

[tex]
\int^{\infty}_{0} x^2 e^{-2\beta x} dx
=
[-x^2\frac{1}{2\beta} ]- \int - 2x \frac{1}{2\beta}e^{-2\beta x}
[/tex]

You are forgetting the [tex]e^{-2\beta x}[/tex] on the first term.
 
  • #48


OKay, let's try this step by step...

[tex] B^2 \int x^2 e^{-\beta x} [/tex]

Using:

[tex] f(x) = x^2 and f'(x) = 2x [/tex]

and

[tex] g'(x) = e^{-\beta x} and g(x) = \frac{1}{- \beta}e^{-\beta x} [/tex]

So:

[tex] = B^2 \left[ -\frac{x^2}{\beta}e^{-\beta x} - \int -\frac{2x}{\beta}e^{-\beta x} \right] [/tex]

[tex] = B^2 \left[ -\frac{x^2}{\beta}e^{-\beta x} + \frac{2x}{\beta}\int e^{-\beta x} \right] [/tex]

Okay so far?
 
  • #49


No, the last line is wrong, 'x' should be inside the integral.
 
  • #50


Ah yes, I see that:

[tex] = B^2 \left[ -\frac{x^2}{\beta}e^{-\beta x} + \frac{2}{\beta}\int xe^{-\beta x} \right] [/tex]

Okay so now, we have:

[tex] \int xe^{-\beta x} [/tex]

So:

[tex] f(x) = x, f'(x) = 1 [/tex]

[tex] g'(x) = e^{-\beta x}, g(x) = -\frac{1}{\beta}e^{-\beta x} [/tex]

So:

[tex] \left[-x\frac{1}{\beta}e^{-\beta x} - \int -\frac{1}{\beta}e^{-\beta x} [/tex]

[tex] \left[-x\frac{1}{\beta}e^{-\beta x} + \frac{1}{\beta} \int e^{-\beta x} [/tex]

Is this okay?
 
  • #51


yeah, but you have forgotten that the original exponential function was [tex]
e^{-2\beta x}
[/tex]
 
  • #52


Not again!

Okay so:

First One:

[tex] f(x) = x^2 and f'(x) = 2x [/tex]

[tex] g'(x) = e^{-2\beta x} and g(x) = -\frac{1}{2 \beta}e^{-2\beta x} [/tex]

Giving:

[tex] B^2 \left[-x^2\frac{1}{2 \beta}e^{-2\beta x} - \int -\frac{2x}{2\beta}e^{-2\beta x} \right] [/tex]

[tex] B^2 \left[-x^2\frac{1}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \int xe^{-2\beta x} \right] [/tex]

So now:

[tex] f(x) = x, f'(x) = 1 [/tex]

[tex] g'(x) = e^{-2\beta x} and g(x) = -\frac{1}{2 \beta}e^{-2\beta x} [/tex]

Giving:

[tex] \left[-x\frac{1}{2 \beta}e^{-2\beta x} - \int \frac{1}{2 \beta}e^{-2\beta x} [/tex]

[tex] \left[-\frac{x}{2 \beta}e^{-2\beta x} + \frac{1}{2 \beta} \int e^{-2\beta x} [/tex]

Does this look better?
 
  • #53


yes, now just do the final integral, and but everything together and perform the limits.
Remember to keep track on those 'beta's, be careful.
 
  • #54


Okay so the integral of:

[tex] \int e^{-2\beta x} = -2 \beta e^{- 2 \beta x} [/tex]

So if we put together, from the top:

[tex] B^2 \left[-x^2\frac{1}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \int xe^{-2\beta x} \right] [/tex]

[tex] \left[-\frac{x}{2 \beta}e^{-2\beta x} + \frac{1}{2 \beta} \int e^{-2\beta x} \right] [/tex]

[tex] \left[ -2 \beta e^{- 2 \beta x} \right] [/tex]

So:

[tex] B^2 \left[-x^2\frac{1}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} + \frac{1}{2 \beta} \int e^{-2\beta x} \right] \right] [/tex]

And:

[tex] B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} + \frac{1}{2 \beta} \left[ -2 \beta e^{- 2 \beta x} \right] \right] \right] [/tex]

One step at a time:

[tex] B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} - \frac{2 \beta}{2 \beta}e^{- 2 \beta x} \right] \right] [/tex]


[tex] B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} - e^{- 2 \beta x} \right] \right] [/tex]

And:

[tex] B^2 \left[ - \frac{x^2}{2\beta}e^{-2\beta x} - \frac{x}{2\beta^2}e^{- 2 \beta x} - \frac{1}{\beta}e^{-2 \beta x} \right] [/tex]

Okay so far?
 
  • #55


[tex]
\int e^{-2\beta x} = -2 \beta e^{- 2 \beta x}
[/tex]

WRONG

it is not the first time you do this mistake
 
  • #56


Hmm, if we integrate e^kx, it becomes 1/k e^kx

So:

[tex] \left[ -\frac{1}{2 \beta} e^{- 2 \beta x} \right] [/tex]

So:

[tex] B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} + \frac{1}{2 \beta} \left[ -\frac{1}{2 \beta} e^{- 2 \beta x} \right] \right] \right] [/tex]

goes to:

[tex] B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} -\frac{1}{4 \beta} e^{- 2 \beta x} \right] \right] [/tex]

[tex] B^2 \left[-\frac{x^2}{2\beta} - \frac{x}{2\beta^2}e^{-2\beta x} - \frac{1}{4\beta^3}e^{-2\beta x} \right] [/tex]

Okay?
 
  • #57


bravo!

now, insert the limits
 
  • #58


Okay, so the limits were between infinity and 0, so:

[tex] B^2 \left[-\frac{x^2}{2\beta} - \frac{x}{2\beta^2}e^{-2\beta x} - \frac{1}{4\beta^3}e^{-2\beta x} \right]^{\infty}_0 [/tex]

so using the approximation e^-infinty = 0:

[tex] B^2 \left[\left(-\frac{\infty^2}{2\beta} - \frac{\infty}{2\beta^2}e^{-2\beta \infty} - \frac{1}{4\beta^3}e^{-2\beta \infty} \right) - \left( -\frac{0^2}{2\beta} - \frac{0}{2\beta^2}e^{-2\beta 0} - \frac{1}{4\beta^3}e^{-2\beta 0} \right) \right] [/tex]

[tex] B^2 \left[\left(-\frac{\infty^2}{2\beta} \right) - \left(-\frac{1}{4\beta^3}e^{-2\beta 0} \right) \right] [/tex]

e^0 = 1

[tex] B^2 \left[\left(-\frac{\infty^2}{2\beta} \right) - \left(-\frac{1}{4\beta^3} \right) \right] [/tex]

So what do I do about the first fraction, with infinity squared on top?
 
  • #59


TFM said:
[tex] B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} -\frac{1}{4 \beta} e^{- 2 \beta x} \right] \right] [/tex]

[tex] B^2 \left[-\frac{x^2}{2\beta} - \frac{x}{2\beta^2}e^{-2\beta x} - \frac{1}{4\beta^3}e^{-2\beta x} \right] [/tex]

Okay?

You've dropped a factor of [tex]e^{-2\beta x}[/tex] from the first term in going from one line to the other. This is why you are getting infinity when you plug in the limits.
 
  • #60


oh I didn't see that, you made that mistake AGAIN! What is 'wrong'? You still had it in the next last line in post #56, why did you remove it?

And one more thing e^x x-> infty IS 0, not just approximate.This guy is correct (next last line in post #56)

[tex]
B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} -\frac{1}{4 \beta} e^{- 2 \beta x} \right] \right]
[/tex]

but not this one:
[tex]
B^2 \left[-\frac{x^2}{2\beta} - \frac{x}{2\beta^2}e^{-2\beta x} - \frac{1}{4\beta^3}e^{-2\beta x} \right]
[/tex]

Be more careful in the future...
 
  • #61


Okay, so should have been:

[tex] B^2 \left[-\frac{x^2}{2\beta}e^{-2\beta x} - \frac{x}{2\beta^2}e^{-2\beta x} - \frac{1}{4\beta^3}e^{-2\beta x} \right]^{\infty}_0 [/tex]

Which means once all the values are put in, we get:


[tex] B^2 \left[\left(-\frac{\infty^2}{2\beta}e^{-2 \beta \infty} \right) - \left(-\frac{1}{4\beta^3} \right) \right] [/tex]

Thus:

[tex] B^2 \left[-\left(-\frac{1}{4\beta^3} \right) \right] [/tex]

[tex] <x> = B^2 \left[\frac{1}{4\beta^3}\right] [/tex]

Is this okay now?
 
  • #62


yes .
 
  • #63


Okay so now we have found

[tex] <x> = B^2 \left[\frac{1}{4\beta^3}\right] [/tex]

This is the Average Position

So now I need to find the most probable I have to find where P(x) is a maximum... does this mean I have to differentiate:

[tex] P(x) = B^2 xe^{-2\beta x} [/tex]
 
  • #64


TFM said:
Okay so now we have found

[tex] <x> = B^2 \left[\frac{1}{4\beta^3}\right] [/tex]

This is the Average Position

So now I need to find the most probable I have to find where P(x) is a maximum... does this mean I have to differentiate:

[tex] P(x) = B^2 xe^{-2\beta x} [/tex]

yeah, you have to find where maximum is.
 
  • #65


Okay So I am assuming I need to use the product rule, so:

[tex] P(x) = B^2 xe^{-2\beta x} [/tex]

Product rule:

[tex] uv = udv + vdu [/tex]

[tex] u = B^2 x, du = B^2 [/tex]

[tex] v = e^{-2\beta x}, dv = -2 \beta e^{-2\beta x} [/tex]

Thus:

[tex] = -B^2x2 \beta e^{-2\beta x} + B^2e^{-2\beta x} [/tex]

Does this look okay?
 
  • #66


TFM said:
Okay so now we have found

[tex] <x> = B^2 \left[\frac{1}{4\beta^3}\right] [/tex]

This is the Average Position

Assuming that the wavefunction is normalized such that

[tex]\int_0^{\infty}P(x)dx=1[/tex]

You can actually compute what the value of [itex]B[/itex] must be in terms of[itex]\beta[/itex] and use that to express the average position in terms of [itex]\beta[/itex] only. That should make it much easier to compare the average value to the expected value.
 
  • #67


yes your derivative is ok.

I think he knows what B is, he said it was a function of 'beta'
 
  • #68


Okay, now I have this in my workings out...

I have [tex] B = 2\beta [/tex]

Does this seem about right?
 
  • #69


yeah that is correct (also B = -2'bets' is fine)
 
  • #70


malawi_glenn said:
yeah that is correct (also B = -2'bets' is fine)

So is [itex]B=\pm 2\beta i[/itex]; all that really matters is that [itex]|B|^2=4\beta^2[/itex].
 

Similar threads

Replies
14
Views
1K
  • Advanced Physics Homework Help
Replies
14
Views
835
  • Advanced Physics Homework Help
Replies
9
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
943
  • Advanced Physics Homework Help
Replies
19
Views
419
  • Advanced Physics Homework Help
Replies
1
Views
805
  • Introductory Physics Homework Help
Replies
15
Views
887
  • Advanced Physics Homework Help
Replies
2
Views
2K
  • Advanced Physics Homework Help
Replies
3
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
1K
Back
Top