## Determinat formula in Einstein notation

Hi all,

I've been looking around at formulae for determinants (using them for tensor densities) and I just want to clarify that the expression below is correct (i.e. formulae are correct):
$$|M| = \sum^n_{a_1,a_2, \ldots ,a_n = 1} \epsilon_{a_1a_2 \ldots a_n} M_{1a_1}M_{2a_2} \ldots M_{na_n} = \sum^n_{a_1,a_2, \ldots ,a_n = 1} \epsilon_{a_1a_2 \ldots a_n} M_{a_11}M_{a_22} \ldots M_{a_nn}$$
The reason I ask is that the second formulae lends itself to Einstein notation:
$$|M| = \epsilon_{a_1a_2 \ldots a_n} M^{a_1}{}_1M^{a_2}{}_2 \ldots M^{a_n}{}_n$$

As an aside question, is this correct in the sense that there are unmatched indices on each side of the equation? I have found the following formula which seems to correct this:
$$\epsilon_{b_1b_2 \ldots b_n}|M| = \epsilon_{a_1a_2 \ldots a_n} M^{a_1}{}_{b_1}M^{a_2}{}_{b_2} \ldots M^{a_n}{}_{b_n}$$
I think they are both correct...?

Cheers
 PhysOrg.com science news on PhysOrg.com >> New language discovery reveals linguistic insights>> US official: Solar plane to help ground energy use (Update)>> Four microphones, computer algorithm enough to produce 3-D model of simple, convex room
 Recognitions: Science Advisor Try $$|M| = \frac{1}{n!} \varepsilon^{b_1 \ldots b_n} \varepsilon_{a_1 \ldots a_n} M^{a_1}{}_{b_1} \ldots M^{a_n}{}_{b_n}$$

 Quote by Ben Niehoff Try $$|M| = \frac{1}{n!} \varepsilon^{b_1 \ldots b_n} \varepsilon_{a_1 \ldots a_n} M^{a_1}{}_{b_1} \ldots M^{a_n}{}_{b_n}$$
OK, that's good. Putting $\epsilon_{b_1 \ldots b_n}$ on both sides gives my final formula.

Also, according to http://en.wikipedia.org/wiki/Levi-Ci...l#Determinants does this not imply that my second formula is equivalent to yours?

 Similar Threads for: Determinat formula in Einstein notation Thread Forum Replies Calculus & Beyond Homework 1 Special & General Relativity 5 Differential Geometry 3 General Math 2 Advanced Physics Homework 28