Number of points on the plane vs. number of points on the line

In summary, R and R^2 have equal cardinality as they can be mapped one-to-one using a bijective function. This is because cardinality only deals with the equivalence relation between sets. R^2 may seem bigger in other contexts, but this does not affect their cardinality. Additionally, the real numbers are isomorphic to the complex numbers as additive groups, but not as fields. This can be proven by finding a bijection between the two sets. However, the proof is non-constructive and requires the axiom of choice. The usual addition is used for both R and C, and the dimensions of R and C are of equal cardinality.
  • #1
Helicobacter
158
0
Is the number of points/cardinality in R^2 greater than R, or are they equal?

if they are equal, how does one explain the following: R^2 is a superset of R, it has infinitely many R's...
 
Last edited:
Physics news on Phys.org
  • #2
Cardinality is a specific measure of the "size" of a set which only deals with the equivalence relation that is: two sets A and B have equal cardinality if there is a bijective function from A to B. In this context R and R^2 have equal size, because we can find such a bijection. In fact, A and A^2 will generally have the same cardinality for infinite sets A.

That R^2 may seem "bigger" in a different context doesn't matter when it comes to cardinality. In another sense this is true: if you consider R as the x-axis of R^2, R will have lebesgue-measure 0 while R^2 will have infinite lebesgue measure. Both are useful ways of interpreting size, but it's important to keep the two concepts separate.
 
  • #3
Wait: there's a bijection between the integers and the even integers, even though the big one has TWO copies (evens and odds) of the small one. Cardinality does these strange things.
 
  • #4
but this should imply that the set of REALS is isomorphic To the set of complex

since ther would always be a biyection between a real number 'x' and a complex number a+bi
 
  • #5
zetafunction said:
but this should imply that the set of REALS is isomorphic To the set of complex

since ther would always be a biyection between a real number 'x' and a complex number a+bi
Here's a bijection. We can, without loss of generality, assume that the real numbers are in the interval [0, 1].

Write the real number x in its decimal form, as x = 0.d1d2d3d4d5d6...

Form the complex number z = 0.d1d3d5... + 0.d2d4d6... i

This is basically the same way that R can be mapped one-to-one to R2.
 
  • #6
And, the reals are indeed isomorphic to the complex numbers as additive groups! They're not isomorphic as fields however...
 
  • #7
micromass said:
And, the reals are indeed isomorphic to the complex numbers as additive groups! They're not isomorphic as fields however...

Under what 'addition'?
 
  • #8
The usual addition. The point is that [tex]\mathbb{R}[/tex] and [tex]\mathbb{C}[/tex] are [tex]\mathbb{Q}[/tex]-vector spaces of thesame dimension. Thus the two spaces are isomorphic as vector spaces, but this exactly means that the additive groups are isomorphic.

This of course uses the axiom of choice...
 
  • #9
I'm also curious about Jarle's question. For example, one way to prove that the interval (-pi/2, pi/2) has the same cardinality as the whole R, is to use the bijection f(x) = tan(x). But, since tan(x+y) is not in general equal to tan(x) + tan(y), more work appears to be needed in order to prove that these sets are isomorphic.
 
  • #10
Dodo said:
I'm also curious about Jarle's question. For example, one way to prove that the interval (-pi/2, pi/2) has the same cardinality as the whole R, is to use the bijection f(x) = tan(x). But, since tan(x+y) is not in general equal to tan(x) + tan(y), more work appears to be needed in order to prove that these sets are isomorphic.

Well, obviously R and (-pi/2,pi/2) cannot be isomorphic as groups since (-pi/2,pi/2) isn't even a group... But R and (-pi/2,pi/2) do have the same number of elements though (= the same cardinality). To prove that two sets have the same cardinality, it suffices to find a bijection between them, you don't care whether the group property is satisfied.

It is easily seen that R and C have the same cardinality. Mark supplied a nice proof of this. All I said was that they are also isomorphic as groups, but this requires a different proof then what Mark supplied. In fact, the proof is a little harder, since it is nonconstructive (= it requires the axiom of choice!).
 
  • #11
Hi, MM,
(-pi/2, pi/2) is not a group... under the usual addition. But it can be a group under the addition operator '*', defined as x*y = arctan(tan(x) + tan(y)). Hence Jarle's question (and mine).

Now, if you say the proof is non-constructive, then there's no point on asking what the addition operation is... but man... curiosity itches...

Of course you can always repeat the trick, and say that, if there exists a bijection between R and C, call it g:R -> C, and if you define the operation '@' defined as x@y = g^-1(g(x) + g(y)), then (R,@) is isomorphic to (C,+). But again, that was not the assertion of that non-constructive proof.
 
  • #12
Dodo said:
Hi, MM,
(-pi/2, pi/2) is not a group... under the usual addition. But it can be a group under the addition operator '*', defined as x*y = arctan(tan(x) + tan(y)). Hence Jarle's question (and mine).

Now, if you say the proof is non-constructive, then there's no point on asking what the addition operation is... but man... curiosity itches...

Of course you can always repeat the trick, and say that, if there exists a bijection between R and C, call it g:R -> C, and if you define the operation '@' defined as x@y = g^-1(g(x) + g(y)), then (R,@) is isomorphic to (C,+). But again, that was not the assertion of that non-constructive proof.

Oops, sorry if my answer was not clear. But the addition is the usual addition. Thus

in R: a+b is just the usual addition.
in C: (a+bi)+(c+di)=(a+c)+(b+d)i is again the usual addition.

That's the point, that we are dealing with the usual additions. Not some "exotic" addition like arctan(tan(x)+tan(y)). The nonconstructive part comes in actually defining the isomorphism between the two groups.
 
  • #13
OK... I was just curious about that proof. I'll try to google harder. :)
 
  • #14
micromass said:
The usual addition. The point is that [tex]\mathbb{R}[/tex] and [tex]\mathbb{C}[/tex] are [tex]\mathbb{Q}[/tex]-vector spaces of thesame dimension. Thus the two spaces are isomorphic as vector spaces, but this exactly means that the additive groups are isomorphic.

This of course uses the axiom of choice...

I agree, nifty solution. In general we require that the dimensions are of equal cardinality, which clearly is satisfied here. The isomorphism function would be tricky to find, it is impossible to write it down.
 
Last edited:

1. How is the number of points on the plane related to the number of points on the line?

The number of points on the plane is significantly greater than the number of points on the line. In fact, for every point on the line, there are infinitely many points on the plane.

2. Why is the number of points on the plane infinite?

The number of points on the plane is infinite because the plane is a two-dimensional object with no definite boundaries, meaning that there is no limit to the number of points that can be plotted on it.

3. Is there a way to determine the exact number of points on the plane?

No, it is impossible to determine the exact number of points on the plane as it is infinitely large. However, we can approximate the number of points within a specific region on the plane by using mathematical calculations.

4. How is the number of points on the plane related to the concept of infinity?

The number of points on the plane is often used to demonstrate the concept of infinity because it is a tangible example of a set that is infinitely large. It helps to understand that even though we cannot count or measure infinity, it is still a valid mathematical concept.

5. Are there different types of infinity when it comes to points on the plane?

Yes, there are different levels of infinity when it comes to points on the plane. For example, the number of points on a line is considered to be a lower level of infinity compared to the number of points on the plane. This is because the plane has an additional dimension, making it a larger set of points.

Similar threads

  • Set Theory, Logic, Probability, Statistics
Replies
7
Views
2K
  • Set Theory, Logic, Probability, Statistics
Replies
2
Views
459
  • Set Theory, Logic, Probability, Statistics
Replies
16
Views
1K
  • Set Theory, Logic, Probability, Statistics
Replies
15
Views
1K
Replies
8
Views
643
  • Set Theory, Logic, Probability, Statistics
Replies
1
Views
758
Replies
4
Views
583
  • Set Theory, Logic, Probability, Statistics
Replies
5
Views
1K
  • Set Theory, Logic, Probability, Statistics
Replies
7
Views
1K
  • Set Theory, Logic, Probability, Statistics
Replies
13
Views
957
Back
Top