Find A Counter-Example to This

  • Thread starter Atran
  • Start date
Therefore, ##p(x) - 2i## is prime. A similar argument can be made for ##p(x) + 2i##. Thus we have proven that the formula always produces a prime number.
  • #1
Atran
93
1
Hi!

Say p(x) is the product of the first x odd prime numbers (e.g. p(4)=3*5*7*11) and i is at least one. Then consider:
1 < p(x) ± 2*i < (p(x+1)/p(x))2

My hypothesis is that the above formula, obeying the restrictions, always produces a prime number.
For example if x=3 and i=13, then p(3)-2*13=79. 79 is bigger than 1 and smaller than 112, therefore it's a prime number.

I'm not a python programmer, but this code yields prime numbers using the above formula:

Code:
from math import ceil

def is_prime(number):
    if(number < 2):
        return False
    i = 2
    while i <= ceil(number**0.5):
        if(number%i == 0):
            return False
        i = i + 1
    return True

def f(number_of_primes):
    flag = True
    prime_product = 1
    prime_array = []

    n, i = 3, 0
    while i < number_of_primes:
        if(is_prime(n) == True):
            prime_product = prime_product * n
            prime_array.append(n)
            i = i + 1
        n = n + 1
    
    while True:
        if(is_prime(n) == True):
            largest_prime = n
            break
        n = n + 1

    i = 1
    while True:
        for x in range(len(prime_array)):
            if(i%prime_array[x] == 0):
                flag = False
                break

        if flag == False:
            flag = True
            i = i + 1
            continue
        
        n = prime_product - 2*i
        if n <= 1:
            break
        if n < largest_prime**2:
            if is_prime(n) == False:
                print("NOT : ", n, " : ", i)
                break
            else:
                print("NMB : ", n, " : ", i)
        i = i + 1

def g(number_of_primes):
    flag = True
    prime_product = 1
    prime_array = []

    n, i = 3, 0
    while i < number_of_primes:
        if(is_prime(n) == True):
            prime_product = prime_product * n
            prime_array.append(n)
            i = i + 1
        n = n + 1
    
    while True:
        if(is_prime(n) == True):
            largest_prime = n
            break
        n = n + 1

    i = 1
    while True:
        for x in range(len(prime_array)):
            if(i%prime_array[x] == 0):
                flag = False
                break

        if flag == False:
            flag = True
            i = i + 1
            continue
        
        n = prime_product + 2*i
        if n < largest_prime**2:
            if is_prime(n) == False:
                print("NOT : ", n, " : ", i)
                break
            else:
                print("NMB : ", n, " : ", i)
        else:
            break
        i = i + 1

x = 4 # Enter a non-negative integer
f(x)
print("- - - - -")
g(x)
Scroll down and assign a non-negative integer to x in the code and run it. If the program detects a non-prime then it should output "NOT" followed by the generated number. If the generated number is a prime, then it outputs "NMB". The second number after the second colon is the value of i. So the above example would be displayed as: "NMB : 79 : 13" (excluding the double quotes)

Thanks for help.
 
Mathematics news on Phys.org
  • #2
What is your question? to find a counter example? or to prove your conjecture?
 
  • #3
I want somebody to prove this wrong, by finding a counter example.

And I'm really sorry, I forgot to mention that i must not be divisible by any of the primes found in the product p(x).

So again,
1 < p(x) ± 2*i < (p(x+1)/p(x))2
where p(x) is the product of the first x odd prime numbers, and i is a positive integer not divisible by any prime in the product p(x).


Example: p(4) - 2*514 = 127.
514 is positive and not divisible by 3, 5, 7, or 11. And 127 is less than 169, so according to the conjecture 127 should be a prime, and it is.
 
  • #4
Your best strategy here would be to let the program find the counter example by finding a list of primes for input and then running it thru its paces. Also if you could find a related program that can check for primeness of a number you could incorporate it into the mix.
 
  • #5
Atran said:
I want somebody to prove this wrong, by finding a counter example.

And I'm really sorry, I forgot to mention that i must not be divisible by any of the primes found in the product p(x).

So again,
1 < p(x) ± 2*i < (p(x+1)/p(x))2
where p(x) is the product of the first x odd prime numbers, and i is a positive integer not divisible by any prime in the product p(x).


Example: p(4) - 2*514 = 127.
514 is positive and not divisible by 3, 5, 7, or 11. And 127 is less than 169, so according to the conjecture 127 should be a prime, and it is.

It's a true conjecture. Here's a proof:

First, we note that since ##p(x)## is not divisible by ##2## and ##2i## is divisible by ##2##, then ##p(x) - 2i## is not divisible by ##2##.
Second, if ##p## is an odd prime occurring in the product of ##p(x)##, then ##p## divides ##p(x)## and ##p## does not divide ##2i##, thus ##p## does not divide ##p(x) - 2i##.

So we deduce that if ##p## is any prime dividing ##p(x)-2i##, then ##p## cannot occur in ##p(x)##. Thus ##p\geq p(x+1)/p(x)##.

So, assume that ##p(x) - 2i## is composite, then there are there are two prime numbers ##p## and ##q## that divide ##p(x) - 2i##. Thus we have ##pq\leq p(x)-2i##. But we also have that ##p\geq p(x+1)/p(x)## and ##q\geq p(x+1)/p(x)##. Thus ##pq\geq (p(x+1)/p(x))^2##. So we see that
[tex](p(x+1)/p(x))^2\leq pq\leq p(x)-2i < (p(x+1)/p(x))^2[/tex]
which is a contradiction.
 
  • Like
Likes 1 person

1. What is a counter-example?

A counter-example is an example or instance that disproves a statement or hypothesis. It is used in mathematics and science to show that a general statement is not always true.

2. How do you find a counter-example?

To find a counter-example, you need to first understand the statement or hypothesis that you are trying to disprove. Then, you need to come up with an example that contradicts the statement. This can be done by using reasoning, logical thinking, or experimentation.

3. Why is it important to find a counter-example?

Finding a counter-example is important because it helps to refine and improve our understanding of a concept or theory. It also allows us to identify the limitations of a statement or hypothesis, and can lead to the development of new ideas and theories.

4. Can a counter-example be subjective?

Yes, a counter-example can be subjective. It can vary depending on the context, assumptions, and interpretation of the statement or hypothesis. This is why it is important to clearly define the parameters and conditions when presenting a counter-example.

5. Is a counter-example always valid?

No, a counter-example is not always valid. It is important to critically evaluate the counter-example and consider any potential flaws or limitations. In some cases, a counter-example may only disprove a specific aspect of a statement, rather than the entire statement itself.

Similar threads

Replies
12
Views
928
  • General Math
Replies
7
Views
470
Replies
5
Views
1K
Replies
13
Views
1K
  • General Math
Replies
1
Views
1K
  • Programming and Computer Science
Replies
22
Views
727
  • Engineering and Comp Sci Homework Help
3
Replies
80
Views
8K
Replies
5
Views
2K
Replies
5
Views
887
Replies
13
Views
1K
Back
Top