## Eigenvalues & Eigenvectors.

Find the eigenvalues and corresponding eigenvector of the matrix.
A=
[-4 4 8 ]
[0 0 -10]
[0 0 2 ]

[1 -1 0]
~ [0 0 1 ]
[0 0 0 ]

I calculated by A = -$\lambda$I

So,

[1-lamda -1 0 ]
[0 -lamda 1]
[0 0 -lamda]

so, lamda = 0,0, and 1

So I got

1st eigen value: 0 eigen vector (1,1,0)
2nd eigen value: 0 eigen vector (1,1,0)
3rd eigen value: 1 eigen vector (1,0,0)

1st and 2nd values were right, but third one was wrong.
I tried several times, and I always get 1(1,0,0)

What do i need to do ?
thanks

 PhysOrg.com science news on PhysOrg.com >> Heat-related deaths in Manhattan projected to rise>> Dire outlook despite global warming 'pause': study>> Sea level influenced tropical climate during the last ice age
 Recognitions: Homework Help Science Advisor if you reduce the matrix, you change the eigenvalues, except for 0. don't reduce the matrix, find the characteristic polynomial of the original A.

 Tags eigen, eigen value, eigen vector, matrix, matrix algebra