Why is the Hubble sphere expanding?

In summary: It's just that the rate of decrease is less than before. So the Hubble radius is still expanding, just at an accelerating rate.And yes, this discovery does require modifications to the Friedmann equations. Specifically, the discovery of dark energy as the source of the accelerating expansion requires the addition of a cosmological constant term to the equations.And no, the Hubble parameter is still decreasing, just at a decreasing rate. It is not increasing.
  • #1
andrewkirk
Science Advisor
Homework Helper
Insights Author
Gold Member
4,119
1,716
Hubble’s law, according to Wikipedia, says that the recession velocity of a distant object P comoving with Earth is vrec=HD where H is Hubble’s constant and D is the proper distance from Earth to P.
The Hubble sphere is the area of space in which all objects comoving with Earth have vrec less than c. From Hubble’s law, one would expect the radius of the Hubble sphere to be c/H, a constant.
Yet Davis and Lineweaver (2003) say the Hubble sphere is expanding, by which I understand that the Hubble radius – the proper distance from Earth to the boundary of the Hubble sphere - is increasing.
How can the Hubble radius be increasing if both Hubble’s constant and the speed of light are constant?
 
Space news on Phys.org
  • #2
Andrew, H(t) is not constant. It changes over time. Shouldn't be called by the name "constant".

The basic equation of cosmology is called the Friedmann equation. (The whole field is based on it, that is how the universe is modeled.) The F. equation is an equation describing how H *changes* over time.

H(t) has been 10X larger in the past, even 100X larger if you go back far enough.

One way to get a feel for this is to use anyone of the online cosmological calculators which convert redshift to distance now, and also tell what the distance was when the light was emitted, and how long ago that was etc. It's good to get used to working with a calculator---they're easy.

A good one to start with is
http://www.einsteins-theory-of-relativity-4engineers.com/cosmocalc_2010.htm
Go there and press "calculate".
It will tell you what Hubble rate H(t) was at the time the light was emitted that we now see as
the CMB (cosmic microwave background).

then put a different number in the "redshift of the source" box.
Like put redshift 9 in the box. The most distant galaxies we have seen so far have redshifts up in the range 9 to 10
Press "calculate" and you will find out what the Hubble rate H(t) was back then when those galaxies emitted the light that we are now getting.

"constant" is just a misnomer that got stuck in the language, once people start using a certain term and writing it in books and get used to calling whatever it is by that name it's *very hard to change*.
We call it that "for historical reasons"
 
Last edited:
  • #3
Thank you Marcus. Is H(t) currently decreasing? That would cause an expansion of the Hubble sphere if I've understood it correctly.
If so, is that the sole reason for the expansion of the Hubble sphere, or are there other factors as well?
 
  • #4
andrewkirk said:
Hubble’s law, according to Wikipedia, says that the recession velocity of a distant object P comoving with Earth is vrec=HD where H is Hubble’s constant and D is the proper distance from Earth to P.
The Hubble sphere is the area of space in which all objects comoving with Earth have vrec less than c. From Hubble’s law, one would expect the radius of the Hubble sphere to be c/H, a constant.
Yet Davis and Lineweaver (2003) say the Hubble sphere is expanding, by which I understand that the Hubble radius – the proper distance from Earth to the boundary of the Hubble sphere - is increasing.
How can the Hubble radius be increasing if both Hubble’s constant and the speed of light are constant?
H is not a constant, but a function of time. The term, "Hubble constant," is a misnomer.
 
  • #5
If you took the hint and went to the calculator
http://www.einsteins-theory-of-relativity-4engineers.com/cosmocalc_2010.htm
and pressed "calculate"
then you know that Hubble rate now is about 70 or 71 in the usual conventional units
call it 70.4 since that's the most recent best estimate.
and BACK THEN when the ancient light was emitted the rate is estimated to have been
1,518,900
that is about one and a half MILLION. (in the same units)
So let's see by what ratio it is less now 1518900/70.4 = 21575

So H(t) was roughly 21 thousand times bigger back then

and therefore the Hubble radius was 21 thousand times SMALLER back then.

Obviously the Hubble radius has grown a lot. So what Lineweaver and Davis say is not so surprising.

Check it out for some other redshifts, using the calculator, like for z = 2, 3, 4, 5 etc.
It's a way of getting some hands-on experience of the standard cosmic model (based on the Friedmann equation)
 
  • #6
andrewkirk said:
Thank you Marcus. Is H(t) currently decreasing? That would cause an expansion of the Hubble sphere if I've understood it correctly.
If so, is that the sole reason for the expansion of the Hubble sphere, or are there other factors as well?

Yes it is currently decreasing but at an ever slower rate.
You know it is now about 70.4 (earlier the most common figure used was 71 but let's say 70.4).

It is expected to kind of level out at around 60 in the same units.

That is the only reason for the increase in the Hubble radius (as you suggest) because the by definition the Hubble radius is simply c/H(t)
So if H(t) decreases, smaller denominator, c/H(t) has to increase. No other cause.
 
Last edited:
  • #7
Thank you Marcus. Sorry for missing the second part of your first post, which is why I didn't get the hint. I got distracted by after reading the first para and when I returned to the PC I had forgotten that there was more.

May I please ask a supplementary question:

How can we reconcile the fact that the Hubble "constant" is decreasing, with the recent discovery (Perlmutter, Schmidt & Riess) that the expansion is accelerating? Does this discovery imply the need for modifications to the Friedman equations on which the calculator is based? Does the discovery imply that, despite the Hubble constant being now well below its value in the distant past, it is now increasing ?

Thank you.
 
  • #8
Acceleration of the expansion means that the Hubble parameter is decreasing less rapidly than before. But it's still decreasing.
 
  • #9
jobigoud said:
Acceleration of the expansion means that the Hubble parameter is decreasing less rapidly than before. But it's still decreasing.

Indeed; the expansion would need to be faster than exponential for the Hubble parameter to increase. That's what it means to be a Hubble parameter. (it's defined to be [itex] H = \dot{a}/a [/itex])
 
  • #10
andrewkirk said:
...

How can we reconcile the fact that the Hubble "constant" is decreasing, with the recent discovery (Perlmutter, Schmidt & Riess) that the expansion is accelerating? Does this discovery imply the need for modifications to the Friedman equations on which the calculator is based? Does the discovery imply that, despite the Hubble constant being now well below its value in the distant past, it is now increasing ?
...

I agree with the concise clear answers that Clamtrox and Jobigoud just gave.

You can track expansion of distances either as an absolute rate or as a "percentage" rate.
To see the absolute rate you look at a quantity called the SCALEFACTOR a(t).
This is normalized so that it equals one at present a(present) = 1
and back when distances were only 1/10 as big it was a(back then) = 0.1

So you can get an idea of the absolute rate distances are growing by looking at the time-derivative a'(t) = da/dt. This is just the slope of the scalefactor a(t) curve.

it is a'(t) that is increasing---the absolute distance growth rate is increasing, the scalefactor curve is getting steeper. But very very slowly. You wouldn't believe---it's hard to comprehend how slow.

The percentage or fractional growth rate puts that absolute rate OVER the whole.
It is a'(t)/a(t).
You can think of it as the amount the distance increased DIVIDED by the distance itself.
It turns out that this fractional rate of increase is DECREASING because the DENOMINATOR is already big and getting bigger.

So yes, a'(t) is increasing, the slope is increasing---that is the "acceleration" people talk about. But a(t) the scalefactor itself is putting on size faster than a'(t) is! So the denominator is growing faster than the numerator. So a'(t)/a(t) is actually decreasing and is expect to continue doing so.
 
  • #11
OK I think I get it. Under Hubble's law, the proper distance between any two distant objects would increase exponentially over time if the Hubble 'constant' were actually constant. So if the Hubble 'constant' is only slightly decreasing, and is expected to asymptotically approach 60 from above (per Marcus's post), the universe will continue to expand approximately exponentially.

Is that right?

Thank you very much for the answers provided. They really help me understand this, which I didn't before.

Here is a follow-up question, if I may:

Can anybody recommend a good freely-available derivation of the FLRW metric and the Friedman equation, assuming an understanding of Einstein's equation and the associated differential geometry as a starting point? I have Schutz's 'A first course in GR', which deals with this in Chapter 12, but his presentations are hard to follow as they skip important steps, use inconsistent and sometimes undefined terms and sometimes mis-state things.
 
Last edited:
  • #12
andrewkirk said:
Can anybody recommend a good freely-available derivation of the FLRW metric and the Friedman equation, assuming an understanding of Einstein's equation and the associated differential geometry as a starting point? I have Schutz's 'A first course in GR', which deals with this in Chapter 12, but his presentations are hard to follow as they skip important steps, use inconsistent and sometimes undefined terms and sometimes mis-state things.

I think Carroll's derivation is good: http://preposterousuniverse.com/grnotes/grnotes-eight.pdf
 
Last edited by a moderator:
  • #13
andrewkirk said:
OK I think I get it. Under Hubble's law, the proper distance between any two distant objects would increase exponentially over time if the Hubble 'constant' were actually constant. So if the Hubble 'constant' is only slightly decreasing, and is expected to asymptotically approach 60 from above (per Marcus's post), the universe will continue to expand approximately exponentially.

Is that right?

That is correct. You can see this easily by looking at the Friedmann equation:

[tex] H^2 = \frac{8\pi G}{3} \rho = H_0^2 (\Omega_\Lambda + \Omega_m a^{-3} + \Omega_r a^{-4}) [/tex]

The energy density of dust, radiation and all other normal stuff dilutes away as the universe expands. Dark energy does not dilute, and it's energy density remains constant. As time passes and the universe expands, you have

[tex] \lim_{a \rightarrow \infty} H^2 = H_0^2 \Omega_\Lambda, [/tex]
which is a constant. You can also see right away where the 60 comes from. Currently we have [itex] H_0 \simeq 70 km/s/Mpc [/itex] and [itex] \Omega_\Lambda \simeq 0.72 [/itex]. From this you can easily calculate [itex] H \rightarrow 60 km/s/Mpc [/itex]
 
  • #14
andrewkirk said:
OK I think I get it. Under Hubble's law, the proper distance between any two distant objects would increase exponentially over time if the Hubble 'constant' were actually constant. So if the Hubble 'constant' is only slightly decreasing, and is expected to asymptotically approach 60 from above (per Marcus's post), the universe will continue to expand approximately exponentially.

Is that right?
I think the reasoning is sound, but the Hubble constant is not simply "slightly decreasing". For most of the time, the expansion has been much closer to linear than to exponential.

If I understood correctly, what is observed is a slight acceleration from linear. With time, recession velocities build up and the expansion eventually catch up with exponential growth.
 
  • #15
Chalnoth
H is not a constant, but a function of time. The term, "Hubble constant," is a misnomer.

yes, that had me confused for a while when I first read it..."Hubble parameter" is a more appropriate term.
H0 is a designation meaning 'Hubble now', but I do not know how universal that is.
 
  • #16
Naty1 said:
..."Hubble parameter" is a more appropriate term.
H0 is a designation meaning 'Hubble now', but I do not know how universal that is.
AFAIK completely universal in the sense you mean, widely used and recognized.
 
  • #17
marcus said:
AFAIK completely universal in the sense you mean, widely used and recognized.
In fact, it seems so universal that, despite coming across the term several times over the last week, in none of the places where it was used did the writer even bother to define it. I surmised that it probably meant "Hubble now" but it's nice to see that explicitly confirmed!
 

1. Why is the Hubble sphere expanding?

The Hubble sphere is expanding due to the expansion of the universe. This expansion is a fundamental property of the universe and is supported by evidence from various observations, such as the redshift of distant galaxies.

2. What is the Hubble sphere?

The Hubble sphere is the theoretical boundary of the observable universe. It is defined as the distance at which objects are receding from us at the speed of light due to the expansion of the universe. Beyond this distance, objects are moving away from us faster than the speed of light and therefore cannot be observed.

3. How fast is the Hubble sphere expanding?

The expansion rate of the Hubble sphere, also known as the Hubble constant, is currently estimated to be around 70 km/s per megaparsec. This means that for every additional megaparsec (3.26 million light years) away an object is from us, it appears to be receding 70 km/s faster.

4. Is the Hubble sphere expanding at a constant rate?

No, the expansion rate of the Hubble sphere is not constant. It has been observed to be accelerating, meaning that the rate of expansion is increasing over time. This is attributed to the presence of dark energy, a mysterious force that is causing the expansion of the universe to accelerate.

5. Will the Hubble sphere ever stop expanding?

It is currently believed that the expansion of the Hubble sphere will continue indefinitely. However, as the universe continues to expand, the rate of expansion may slow down or speed up depending on the influence of different factors, such as dark energy and the distribution of matter.

Similar threads

  • Cosmology
Replies
13
Views
2K
Replies
18
Views
1K
  • Special and General Relativity
2
Replies
54
Views
3K
Replies
5
Views
1K
Replies
1
Views
1K
  • Cosmology
Replies
4
Views
2K
Replies
4
Views
1K
Replies
10
Views
2K
Replies
8
Views
2K
  • Cosmology
Replies
11
Views
3K
Back
Top