An engineering perspective on christmas

In summary, the conversation discusses the feasibility of Santa Claus and his ability to deliver presents to all the children in the world in one night. It calculates the number of households, distance traveled, and weight of his sleigh, ultimately concluding that it would be impossible for Santa to exist and survive the journey. The conversation ends on a humorous note, wishing everyone a happy festive season.
  • #1
davenn
Science Advisor
Gold Member
2023 Award
9,587
10,211
AN ENGINEERING PERSPECTIVE ON CHRISTMAS
There are approximately two billion children (persons under 18) in the world.

However, since Santa does not visit children of Muslim, Hindu, Jewish or Buddhist (except maybe in Japan) religions, this reduces the workload for Christmas night to 15% of the total, or 378 million (according to the population reference bureau).

At an average (census) rate of 3.5 children per household, that comes to 108 million homes, presuming there is at least one good child in each. Santa has about 31 hours of Christmas to work with, thanks to the different time zones and the rotation of the earth, assuming east to west (which seems logical). This works out to 967.7 visits per second.

This is to say that for each Christian household with a good child, Santa has around 1/1000th of a second to park the sleigh, hop out, jump down the chimney, fill the stocking, distribute the remaining presents under the tree, eat whatever snacks have been left for him, get back up the chimney, jump into the sleigh and get onto the next house.

Assuming that each of these 108 million stops is evenly distributed around the Earth (which, of course, we know to be false, but will accept for the purposes of our calculations), we are now talking about 0.78 miles per household; a total trip of 75.5 million miles, not counting bathroom stops or breaks.

This means Santa's sleigh is moving at 650 miles per second -- 3,000 times the speed of sound. For purposes of comparison, the fastest man-made vehicle, the Ulysses space probe, moves at a poky 27.4 miles per second, and a conventional reindeer can run (at best) 15 miles per hour.

The payload of the sleigh adds another interesting element. Assuming that each child gets nothing more than a medium sized LEGO set (two pounds), the sleigh is carrying over 500 thousand tons, not counting Santa himself.

On land, a conventional reindeer can pull no more than 300 pounds.

Even granting that the "flying" reindeer can pull 10 times the normal amount, the job can't be done with eight or even nine of them -- Santa would need 360,000 of them. This increases the payload, not counting the weight of the sleigh, another 54,000 tons, or roughly seven times the weight of the Queen Elizabeth (the ship, not the monarch).

600,000 tons traveling at 650 miles per second creates enormous air resistance - this would heat up the reindeer in the same fashion as a spacecraft reentering the Earth's atmosphere. The lead pair of reindeer would absorb 14.3 quintillion joules of energy per second each. In short, they would burst into flames almost instantaneously, exposing the reindeer behind them and creating deafening sonic booms in their wake.

The entire reindeer team would be vaporized within 4.26 thousandths of a second, or right about the time Santa reached the fifth house on his trip.

Not that it matters, however, since Santa, as a result of accelerating from a dead stop to 650 miles/ses in .001 seconds, would be subjected to acceleration forces of 17,000 g's. A 250 pound Santa (which seems ludicrously slim) would be pinned to the back of the sleigh by 4,315,015 pounds of force, instantly crushing his bones and organs and reducing him to a quivering blob of pink goo.

Therefore, if Santa did exist, he's dead now. Merry Christmas!
( source unknown --- the www)

sorry
couldnt resist!

have an awesome festive season everyone

cheers
Dave
 
Physics news on Phys.org
  • #3
Way to spoil all the joy for children like me :(
 

1. How does engineering play a role in Christmas celebrations?

Engineering plays a crucial role in Christmas celebrations by providing the technology and infrastructure needed for various traditions and activities. From designing and manufacturing Christmas decorations to developing efficient transportation systems for gift delivery, engineering is involved in many aspects of the holiday.

2. What are some examples of engineering in Christmas decorations?

Some examples of engineering in Christmas decorations include the design and production of string lights, artificial Christmas trees, and animatronic figures. Engineers also play a role in creating elaborate holiday displays and light shows through the use of advanced technologies and programming.

3. How has engineering improved the efficiency of gift-giving during Christmas?

Engineering has greatly improved the efficiency of gift-giving during Christmas through the development of online shopping platforms, automated packaging and shipping systems, and advanced logistics management software. These advancements have made it easier for people to purchase and send gifts to their loved ones during the holiday season.

4. What are some sustainable engineering practices during Christmas?

Some sustainable engineering practices during Christmas include using LED lights instead of traditional incandescent lights, purchasing eco-friendly and recyclable decorations, and opting for electronic greeting cards instead of paper cards. Engineers also play a role in developing sustainable packaging solutions for holiday gifts.

5. How does engineering contribute to the safety of Christmas celebrations?

Engineering contributes to the safety of Christmas celebrations through the development of fire-resistant materials for decorations, implementing safety protocols for holiday light displays, and designing safe and efficient transportation systems for holiday travel. Engineers also work to ensure the safety of products and toys that are popular gifts during Christmas.

Similar threads

  • General Discussion
Replies
6
Views
3K
  • General Discussion
Replies
5
Views
2K
Replies
3
Views
10K
Replies
11
Views
3K
  • General Discussion
Replies
2
Views
3K
  • Introductory Physics Homework Help
Replies
8
Views
2K
Replies
14
Views
2K
  • Math Proof Training and Practice
2
Replies
67
Views
10K
  • Science Fiction and Fantasy Media
2
Replies
37
Views
4K
  • Precalculus Mathematics Homework Help
Replies
2
Views
1K
Back
Top