Photographing a light source: why does it not make whole image equally bright?

In summary, the conversation discusses the behavior of light, specifically in relation to an image. The participants consider factors such as the angle of impact, rate of photons hitting different parts of the image, dispersion, and absorption. They also touch on the use of a camera and potential issues with image brightness decreasing towards the edges. The concept of light rays is also discussed and how they are not physically emitted but rather a conceptual device. The conversation ends with a question regarding the density of rays, which is explained in terms of the finite output of radiation from a source.
  • #1
tris_d
162
0
Code:
 light
    O
   / \
  /   \
 /     \
 ---*---
image

The above image gets brightest in the middle, but photons get equally emitted in all the directions, so what is it that keeps them form making the whole image equally bright? Is it angle of impact? Could it be the rate by which photons hit parts of the image further from the middle is somehow slower? Maybe dispersion, absorption along longer distance? What else could it be?
 
Computer science news on Phys.org
  • #2
Is there an optical system here, or are you just shining light onto a piece of paper? I assume there is one, but I want to be sure.
 
  • #3
If you're using a camera, what kind of camera is it? How are you focusing it? Low-quality cameras often have the image brightness decrease with distance from the center. This is called "vignetting."
 
  • #4
Drakkith said:
Is there an optical system here, or are you just shining light onto a piece of paper? I assume there is one, but I want to be sure.

Shining light onto a piece of paper. Where the light is not directional like flashlight, but is some kind of point source that shines light in all direction. I am asking this in relation to stars we are talking about in another thread.
 
  • #5
jtbell said:
If you're using a camera, what kind of camera is it? How are you focusing it? Low-quality cameras often have the image brightness decrease with distance from the center. This is called "vignetting."

I was thinking the simplest case scenario (shining light onto a piece of paper), but if there are any other peculiarities like the one you just mentioned, especially in relation to photographing stars, then please tell me about it.
 
Last edited:
  • #6
tris_d said:
Shining light onto a piece of paper. Where the light is not directional like flashlight, but is some kind of point source that shines light in all direction.

Ah. When someone says "photograph," many people tend to think a camera is involved. :wink:

The intensity of light from a point source decreases with the square of the distance. Assuming the source is opposite the center of the paper, how does the distance from the source, at the edges of the paper, compare with the distance at the center?
 
  • #7
jtbell said:
Ah. When someone says "photograph," many people tend to think a camera is involved. :wink:

The intensity of light from a point source decreases with the square of the distance. Assuming the source is opposite the center of the paper, how does the distance from the source, at the edges of the paper, compare with the distance at the center?

The distance towards the edges is longer. And if I imagine light source as a shower I can see how water drops would spread out more over longer distance, but it's hard to imagine light can become sparse like that. It seems that would indicate photons do not get emitted from the same point on the source one right after another forming continuous rays, but rather get spit out from the same point in the same direction only every now and then.
 
  • #8
You seem to have explained well enough (although with no Maths) why you wouldn't expect the illumination to be uniform.
You only have to think of a (near) infinite sheet beneath a point source to see why illumination could not be the same right out to the edges. The only time you would get uniform illumination ( from an isotropic source) would be if it were at the centre of a spherical screen. The distance in every direction would be the same.
 
  • #9
tris_d said:
It seems that would indicate photons do not get emitted from the same point on the source one right after another forming continuous rays, but rather get spit out from the same point in the same direction only every now and then.

Perhaps it would be better to think of light as a classical EM wave and ignore photons for the moment. I guarantee you that light is not emitted as little particles that then travel in straight lines. The reality is far more complicated.
 
  • #10
sophiecentaur said:
You seem to have explained well enough (although with no Maths) why you wouldn't expect the illumination to be uniform.
You only have to think of a (near) infinite sheet beneath a point source to see why illumination could not be the same right out to the edges. The only time you would get uniform illumination ( from an isotropic source) would be if it were at the centre of a spherical screen. The distance in every direction would be the same.

Ok. Let me put it this way: why are not rays infinitely dense? If you look at the picture below at any two rays, why are there not infinitely many rays between them? Is it due to Planck scale, or something like that?

420px-Inverse_square_law.svg.png
 
  • #11
tris_d said:
Ok. Let me put it this way: why are not rays infinitely dense? If you look at the picture below at any two rays, why are there not infinitely many rays between them? Is it due to Planck scale, or something like that?

Because each emitter can only output a finite amount of radiation. As the wavefront expands the energy is spread out more and more. The picture merely illustrates this using a few rays, as drawing hundreds or thousands wouldn't be possible. If you want to represent each ray as being one photon, then any real source would not put out an infinite number of photons.
 
  • #12
tris_d said:
Ok. Let me put it this way: why are not rays infinitely dense? If you look at the picture below at any two rays, why are there not infinitely many rays between them?

Light rays are a conceptual device, not physical objects. The intensity of the light falling on a surface (typically measured in watts per square meter) is proportional to the number of rays per unit area at that surface, but you're free to make the proportionality constant whatever you like, so long as you're consistent about it.
 
  • #13
tris_d said:
Ok. Let me put it this way: why are not rays infinitely dense? If you look at the picture below at any two rays, why are there not infinitely many rays between them? Is it due to Planck scale, or something like that?

420px-Inverse_square_law.svg.png
For clarity's sake, please note that the "pieces of paper" in this image are not flat.
 
  • #14
OK, great. Thank you all. So the light coming from some star, why does it not spread out and produce blurred blob on a photo? They kind of appear "sharp", like it's directional light coming from a flash light where all the rays are parallel.
 
  • #15
tris_d said:
OK, great. Thank you all. So the light coming from some star, why does it not spread out and produce blurred blob on a photo? They kind of appear "sharp", like it's directional light coming from a flash light where all the rays are parallel.

Optics! Lenses and mirrors are curved and focus the light down to a point. The size of this point varies with the wavelength of the light and the diameter of the aperture.

http://en.wikipedia.org/wiki/Airy_disk
http://en.wikipedia.org/wiki/Lens_(optics)

Little known fact: The apparent size of a star in a photograph has absolutely no relation to the actual size of the star. Brighter stars make a bigger, brighter airy disk than smaller stars. Of course this only applies to stars other than the Sun, as far away stars can be considered "point sources". This means that the actual disk of the star is far smaller than the size of the airy disk.
 
  • #16
Drakkith said:
Little known fact: The apparent size of a star in a photograph has absolutely no relation to the actual size of the star. Brighter stars make a bigger, brighter airy disk than smaller stars. Of course this only applies to stars other than the Sun, as far away stars can be considered "point sources". This means that the actual disk of the star is far smaller than the size of the airy disk.

Yes, unless you use a really big lens \ mirror, and then you do get an image, and not just an airy disc (although, in real life this would apply to distinguishing between galaxies, stars would probably still be limited to airy disc size unless you got some VERY VERY big telescope) .
But another little known fact is that lots of the "stars" we see looking at the sky are actually galaxies :)
And yet another nice photography fact - if you want cool shaped stars, use a none circular aperture stop, the shape of the star is the square of the Fourier of the aperture.
So a rectangular aperture would look like a cross, and a pentagonal aperture would produce a star shaped star :)
 
  • #17
fargoth said:
But another little known fact is that lots of the "stars" we see looking at the sky are actually galaxies :)

Well, not with our eyes. Only about 2-3 galaxies are visible to the naked eye, along with another couple of dwarf galaxies.
 

1. Why does photographing a light source make the image appear overexposed?

When photographing a light source, the camera's exposure settings are often set for the average brightness of the scene. However, since the light source is much brighter than the rest of the scene, it can cause the image to appear overexposed or too bright.

2. How does the distance of the light source affect the brightness of the image?

The closer the light source is to the camera, the brighter it will appear in the image. This is because the light is more concentrated and has less distance to travel before reaching the camera's sensor.

3. Why does the angle of the light source affect the brightness of the image?

The angle of the light source determines how much light is hitting the subject being photographed. When the light source is pointed directly at the subject, it will appear brighter than if it is at an angle, as some of the light will be hitting other areas and not the subject itself.

4. How does the size of the light source impact the brightness of the image?

The larger the light source, the softer and more diffused the light will be. This means that the light will be spread out more evenly, resulting in a more even brightness across the image. A smaller light source will create harsher shadows and uneven brightness.

5. Can adjusting the camera's exposure settings solve the issue of uneven brightness when photographing a light source?

Yes, adjusting the exposure settings can help create a more balanced image when photographing a light source. Experiment with different settings such as aperture, shutter speed, and ISO to find the best balance for the specific light source and scene being photographed.

Similar threads

Replies
8
Views
1K
  • Other Physics Topics
Replies
16
Views
4K
Replies
13
Views
2K
  • Special and General Relativity
Replies
13
Views
1K
  • Special and General Relativity
2
Replies
52
Views
3K
Replies
16
Views
1K
Replies
10
Views
2K
  • Sci-Fi Writing and World Building
Replies
2
Views
1K
  • Electrical Engineering
Replies
26
Views
2K
Back
Top