Just need a quick explanation (Power Series)

In summary: Comments: \fbox{UNCLEAR}: The function g(x) = \frac{1}{1-x} seems to fit the form given in the problem, but I'm not sure if it's the best choice.
  • #1
DivGradCurl
372
0
Problem:

(a) Expand

[tex] f(x)=\frac{x+x^2}{\left( 1-x\right) ^3} [/tex]

as a power series.

(b) Use part (a) to find the sum of the series

[tex] \sum _{n=1} ^{\infty} \frac{n^2}{2^n} [/tex]

[tex] \hline[/tex]

Solution:

(a)

[tex] f(x)=\frac{x+x^2}{\left( 1-x\right) ^3} = \left( x + x^2 \right) \left[ 1 + (-x) \right] ^{-3} = \left( x + x^2 \right) \sum _{n=0} ^{\infty} \binom{-3}{n} (-x) ^n = \left( x + x^2 \right) \sum _{n=0} ^{\infty} (-1) ^n \binom{-3}{n} x ^n [/tex]

[tex] f(x) = \left( x + x^2 \right) \left[ \binom{-3}{0} - \binom{-3}{1}x + \binom{-3}{2} x^2 - \binom{-3}{3} x^3 + \binom{-3}{4} x^4 - \cdots \right] [/tex]

[tex] f(x) = \left( x + x^2 \right) \left[ 1 - \frac{(-3)}{1!}x + \frac{(-3)(-4)}{2!}x^2 - \frac{(-3)(-4)(-5)}{3!}x^3 + \frac{(-3)(-4)(-5)(-6)}{4!}x^4 -\cdots \right] [/tex]

[tex] f(x) = \left( x + x^2 \right) \left[ 1 + \frac{1}{2} \sum _{n=1} ^{\infty} \frac{\left( n+2 \right)!}{n!}x^n \right] = \left( x + x^2 \right) \left[ 1 + \frac{1}{2} \sum _{n=1} ^{\infty} (n+2)(n+1)x^n \right] [/tex]

[tex] f(x) = x + x^2 + \frac{1}{2} \sum _{n=1} ^{\infty} \left[ (n+2)(n+1)x^{n+1} \right] + \frac{1}{2} \sum _{n=1} ^{\infty} \left[ (n+2)(n+1)x^{n+2} \right] [/tex]

[tex] f(x) = x + x^2 - \frac{x\left( 3x-3x^2+x^3\right)}{\left( x-1 \right) ^3} - \frac{x^2\left( 3x-3x^2+x^3\right)}{\left( x-1 \right) ^3} \qquad \fbox{UNCLEAR} [/tex]

[tex] f(x) = x + x^2 - \left[ x +\frac{1}{\left( x-1 \right) ^2} +\frac{1}{\left( x-1 \right) ^3} \right] - \left[ x^2 + \frac{1}{ x-1} + \frac{2}{\left( x-1 \right) ^2} + \frac{1}{\left( x-1 \right) ^3} \right] [/tex]

[tex] f(x) = -\frac{1}{ x-1} -\frac{3}{\left( x-1 \right) ^2} - \frac{2}{\left( x-1 \right) ^3} = \frac{x\left( x+1 \right)}{\left( x-1 \right) ^3} = x \frac{d}{dx} x \frac{d}{dx} \left[ \frac{1}{1-x} \right] = x \frac{d}{dx} x \frac{d}{dx} \left[ \sum _{n=0} ^{\infty} x^n \right] [/tex]

[tex] f(x) = \sum _{n=1} ^{\infty} n^2 x^n [/tex]

(b)

[tex] \sum _{n=1} ^{\infty} \frac{n^2}{2^n} = \sum _{n=1} ^{\infty} n^2 \left( \frac{1}{2} \right) ^n = f\left( \frac{1}{2} \right) = \frac{\frac{1}{2}+\left( \frac{1}{2} \right)^2}{\left( 1-\frac{1}{2}\right) ^3} = 6 [/tex]

Comments:

[tex] \fbox{UNCLEAR}: [/tex] I don't understand the transition from the series above to this result.

Thank you :smile:
 
Physics news on Phys.org
  • #2
You know

[tex]g(x) = \sum _{n = 0} ^{\infty}\frac{g^{(n)}(a)}{n!}(x-a)^n[/tex]

Can you find some g such that you can express:

[tex] \sum _{n=1} ^{\infty} \left[ (n+2)(n+1)x^{n+1} \right][/tex]

in the form above?
 
  • #3
Thanks for the tip!

(a)

[tex] f(x)=\frac{x+x^2}{\left( 1-x\right) ^3} = \left( x + x^2 \right) \left[ 1 + (-x) \right] ^{-3} = \left( x + x^2 \right) \sum _{n=0} ^{\infty} \binom{-3}{n} (-x) ^n = \left( x + x^2 \right) \sum _{n=0} ^{\infty} (-1) ^n \binom{-3}{n} x ^n [/tex]

[tex] f(x) = \left( x + x^2 \right) \left[ \binom{-3}{0} - \binom{-3}{1}x + \binom{-3}{2} x^2 - \binom{-3}{3} x^3 + \binom{-3}{4} x^4 - \cdots \right] [/tex]

[tex] f(x) = \left( x + x^2 \right) \left[ 1 - \frac{(-3)}{1!}x + \frac{(-3)(-4)}{2!}x^2 - \frac{(-3)(-4)(-5)}{3!}x^3 + \frac{(-3)(-4)(-5)(-6)}{4!}x^4 -\cdots \right] [/tex]

[tex] f(x) = \left( x + x^2 \right) \left[ 1 + \frac{1}{2} \sum _{n=1} ^{\infty} \frac{\left( n+2 \right)!}{n!}x^n \right] = \left( x + x^2 \right) \left[ 1 + \frac{1}{2} \sum _{n=1} ^{\infty} (n+2)(n+1)x^n \right] [/tex]

[tex] f(x) = x + x^2 + \frac{1}{2} \sum _{n=1} ^{\infty} \left[ (n+2)(n+1)x^{n+1} \right] + \frac{1}{2} \sum _{n=1} ^{\infty} \left[ (n+2)(n+1)x^{n+2} \right] [/tex]

[tex] f(x) = x + x^2 + \left\{ \frac{x}{2} \frac{d^2}{dx^2} \left[ x^2 \sum _{n=0} ^{\infty} x^n \right] - x \right\} + \left\{ \frac{x^2}{2} \frac{d^2}{dx^2} \left[ x^2 \sum _{n=0} ^{\infty} x^n \right] - x^2 \right\} [/tex]

[tex] f(x) = x + x^2 + \left\{ \frac{x}{2} \frac{d^2}{dx^2} \left[ x^2 \left( \frac{1}{1-x} \right) \right] - x \right\} + \left\{ \frac{x^2}{2} \frac{d^2}{dx^2} \left[ x^2 \left( \frac{1}{1-x} \right) \right] - x^2 \right\} [/tex]

[tex] f(x) = x + x^2 - \frac{x\left( 3x-3x^2+x^3\right)}{\left( x-1 \right) ^3} - \frac{x^2\left( 3x-3x^2+x^3\right)}{\left( x-1 \right) ^3} [/tex]

[tex] f(x) = x + x^2 - \left[ x +\frac{1}{\left( x-1 \right) ^2} +\frac{1}{\left( x-1 \right) ^3} \right] - \left[ x^2 + \frac{1}{ x-1} + \frac{2}{\left( x-1 \right) ^2} + \frac{1}{\left( x-1 \right) ^3} \right] [/tex]

[tex] f(x) = -\frac{1}{ x-1} -\frac{3}{\left( x-1 \right) ^2} - \frac{2}{\left( x-1 \right) ^3} = \frac{x\left( x+1 \right)}{\left( x-1 \right) ^3} = x \frac{d}{dx} x \frac{d}{dx} \left[ \frac{1}{1-x} \right] = x \frac{d}{dx} x \frac{d}{dx} \left[ \sum _{n=0} ^{\infty} x^n \right] [/tex]

[tex] f(x) = \sum _{n=1} ^{\infty} n^2 x^n [/tex]

(b)

[tex] \sum _{n=1} ^{\infty} \frac{n^2}{2^n} = \sum _{n=1} ^{\infty} n^2 \left( \frac{1}{2} \right) ^n = f\left( \frac{1}{2} \right) = \frac{\frac{1}{2}+\left( \frac{1}{2} \right)^2}{\left( 1-\frac{1}{2}\right) ^3} = 6 [/tex]
 

What is a power series?

A power series is a mathematical series in which each term is a constant multiplied by a variable raised to a non-negative integer power. It is typically used to represent functions as an infinite sum of terms.

What is the general form of a power series?

The general form of a power series is ∑n=0∞ an(x-c)n, where an is a constant coefficient, x is the variable, and c is the center of the series.

How is a power series different from a regular series?

A power series is different from a regular series in that it involves an infinite number of terms and each term is multiplied by a variable raised to a non-negative integer power. Regular series, on the other hand, can have a finite number of terms and do not necessarily involve a variable raised to a power.

What is the purpose of using a power series?

The purpose of using a power series is to approximate functions, especially those that cannot be easily integrated or differentiated. Power series can also be used to evaluate functions at specific values and to find the radius of convergence for a given function.

How do you determine the convergence of a power series?

The convergence of a power series can be determined by using the ratio test or the root test. These tests check the behavior of the terms in the series as n approaches infinity, and if the limit of the ratio or root is less than 1, the series will converge. Additionally, the ratio of convergence can also be found by using the ratio test.

Similar threads

Replies
3
Views
305
Replies
4
Views
322
Replies
2
Views
1K
Replies
6
Views
649
Replies
16
Views
2K
Replies
3
Views
1K
Replies
1
Views
2K
Replies
2
Views
859
Replies
1
Views
1K
  • Calculus
Replies
19
Views
1K
Back
Top