Modeling Non-Viscous Damping with DE

  • Thread starter Quadruple Bypass
  • Start date
  • Tags
    Damping
In summary, the equation for damping in a metallic system is better explained by hysteretic damping, which considers a displacement-dependent force in phase with system's velocity.
  • #1
Quadruple Bypass
120
0
im trying to model a mass hitting a block of honeycomb aluminum with a DE.

is the whole mx"+bx'+kx=F(t) eqn. void because b isn't viscous? Is there a way to get around that?
 
Engineering news on Phys.org
  • #2
Why is the damping not viscous? What exactly do you mean by that?
 
  • #3
the honeycomb will be used as the damper. i was told by a professor that i couldn't use that equation
 
  • #4
I've seen elastic constants and damping ratios specified for honeycomb dampers. I don't see why this is different. Maybe someone else will have a better idea.
 
  • #5
Gokul43201 said:
I've seen elastic constants and damping ratios specified for honeycomb dampers. I don't see why this is different. Maybe someone else will have a better idea.

where did you find it? I've looked everywhere online but haven't had any luck =/
 
  • #6
There are two main approaches to damping - viscous damping and hysteretic damping.

You may find that as a simple approximation a viscous damping model may still be useful. But it's often argued that a hysteretic damping model will more accurately represent what really happens in solid structures, especially metals. Hysteretic damping basically assumes a damping force proportional to displacement but in phase with velocity. You should be able to find out more in vibrations or dynamics textbooks.
 
  • #7
timmay said:
Hysteretic damping basically assumes a damping force proportional to displacement but in phase with velocity

You may find more results looking for "viscoelastic" damping. I just had a project on the same stuff.
 
  • #8
Quadruple Bypass said:
where did you find it? I've looked everywhere online but haven't had any luck =/
I can't recall where, sorry. This was a small part of a term paper I wrote many years ago. But I think the honeycombs I was looking at were cardboard honeycombs, which behave more like traditional viscous dampers than perhaps aluminum honeycombs do.

So, to make sure I understand, hysteretic damping involves straining the metallic structure beyond the linear regime, but not so far that it goes deep into the plastic regime?
 
  • #9
You're not real specific with what end result you are looking for. If you are working towards stresses developed, like Minger mentioned, you may look at viscoelasticity although it tends to be more of a study in creep and such. It may not be what you need in the end. Anyways, the is the main viscoelastic model I studied was the Maxwell model:

http://en.wikipedia.org/wiki/Maxwell_material

Other models include:
Voight-Kelvin:
http://en.wikipedia.org/wiki/Kelvin-Voigt_material
 
  • #10
Polymer systems are generally modeled by viscous damping, which adds a consideration of a velocity-dependent damping force. In the simplest case, a single degree of freedom system comprising a mass with a spring and dashpot in parallel (i.e. Kelvin-Voigt) the equation of motion for the system in free vibration is:

[tex]m\ddot{x} + c\dot{x} + kx = 0[/tex]

where m is the system mass, c the viscous damping coefficient and k the spring stiffness.

It's been found that damping in metallic systems is better explained by hysteretic damping, which considers a displacement-dependent force in phase with system's velocity. Here:

[tex]m\ddot{x} + k(1+i\eta)x = 0[/tex]

where [tex]\eta[/tex] is the hysteretic damping coefficient divided by the spring constant, or the ratio of hysteresis loss during a cycle.

An even better approach is to assume that damping is a mixture between the two models. This is known as a fractional damping model. All these relationships assume that damping is linear, and as a result is generally limited to small strains although there are corrections for non-linear behaviour too.

If your honeycomb were polymeric, then a viscous damping approach would be pretty good. But as it's aluminium, as mentioned you're probably better looking at the hysteretic model. A pretty simple method of doing that would be to take a solid phase sample of the honeycomb aluminium and test it in tension or compression through a series of cycles, and measure the hysteresis loss per cycle (i.e. the difference between loading and unloading curves).

With a little bit of consideration, you can plug it back into your equation of motion and see what happens.
 
  • #11
Alright, thanks guys. I am going to take a look at it again tonight and hopefully I will understand it :P
 

What is the concept of non-viscous damping?

Non-viscous damping is a type of damping that does not involve energy dissipation through a viscous medium. Instead, it is based on the idea of energy exchange between two oscillating systems, typically a mechanical system and a dissipative element, such as an electrical circuit.

Why is modeling non-viscous damping important?

Modeling non-viscous damping is important because it allows us to accurately predict the behavior of dynamic systems, such as structures and machines, which are subject to forces that cause them to vibrate. It also helps to improve the design and performance of these systems.

What is the role of differential equations (DE) in modeling non-viscous damping?

Differential equations are used to mathematically describe the relationship between the forces acting on a system and its displacement, velocity, and acceleration. In modeling non-viscous damping, DEs are used to represent the energy exchange between the two systems and to determine the system's response over time.

How do you solve DEs for modeling non-viscous damping?

There are several methods for solving DEs, such as analytical, numerical, and graphical methods. The most commonly used method for modeling non-viscous damping is the numerical method, which involves breaking down the DE into smaller, simpler equations and using a computer to solve them.

What are some real-world applications of modeling non-viscous damping with DE?

Modeling non-viscous damping with DE has various real-world applications, including earthquake engineering, structural dynamics, and vehicle suspension systems. It is also used in the design and analysis of electronic circuits, control systems, and aerospace structures.

Similar threads

  • Introductory Physics Homework Help
Replies
3
Views
1K
Replies
7
Views
636
  • Calculus and Beyond Homework Help
Replies
7
Views
1K
  • Introductory Physics Homework Help
Replies
17
Views
373
  • Introductory Physics Homework Help
Replies
2
Views
4K
  • Classical Physics
4
Replies
131
Views
4K
  • Introductory Physics Homework Help
Replies
8
Views
990
Replies
3
Views
644
  • Introductory Physics Homework Help
Replies
4
Views
2K
  • Calculus and Beyond Homework Help
Replies
2
Views
2K
Back
Top