Coplanar and Linear dependency.


by jrotmensen
Tags: coplanar, dependency, linear
jrotmensen
jrotmensen is offline
#1
Dec26-09, 01:12 AM
P: 3
1. The problem statement, all variables and given/known data
Prove that vectors u, v, w are coplanar if and only if vectors u, v and w are linearly dependent.


[tex]\overline{v}_{3}=\alpha\overline{v}_{1}+\beta\overline{v}_{2}[/tex] (Coplanar Vector Property)
[tex]\alpha\overline{v}_{1}+\beta\overline{v}_{2}+\gamma\overline{v}_{3}=\ov erline{0}[/tex] (linearly dependent vector property)
Phys.Org News Partner Science news on Phys.org
Cougars' diverse diet helped them survive the Pleistocene mass extinction
Cyber risks can cause disruption on scale of 2008 crisis, study says
Mantis shrimp stronger than airplanes
HallsofIvy
HallsofIvy is offline
#2
Dec26-09, 04:33 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 38,896
Quote Quote by jrotmensen View Post
1. The problem statement, all variables and given/known data
Prove that vectors u, v, w are coplanar if and only if vectors u, v and w are linearly dependent.


[tex]\overline{v}_{3}=\alpha\overline{v}_{1}+\beta\overline{v}_{2}[/tex] (Coplanar Vector Property)
[tex]\alpha\overline{v}_{1}+\beta\overline{v}_{2}+\gamma\overline{v}_{3}=\ov erline{0}[/tex] (linearly dependent vector property)
State the entire properties! What you have are equations, not properties.

"Three vectors, [itex]v_1[/itex], [itex]v_2[/itex], and [itex]v_3[/itex] are coplanar if and only if
[tex]\overline{v}_{3}=\alpha\overline{v}_{1}+\beta\overline{v}_{2}[/tex]
or
[tex]\overline{v}_{1}=\alpha\overline{v}_{2}+\beta\overline{v}_{3}[/tex]
or
[tex]\overline{v}_{2}=\alpha\overline{v}_{1}+\beta\overline{v}_{3}[/tex]
for some numbers [itex]\alpha[/itex] and [itex]\beta[/itex]"

"Three vectors, [itex]v_1[/itex], [itex]v_2[/itex], and [itex]v_3[/itex] are dependent if [tex]\alpha\overline{v}_{1}+\beta\overline{v}_{2}+\gamma\overline{v}_{3}=\ov erline{0}[/tex]
with not all of [itex]\alpha[/itex], [itex]\beta[/itex], [itex]\gamma[/itex] equal to 0."

Suppose [itex]\vec{v_1}[/itex], [itex]\vec{v_2}[/itex], and [itex]\vec{v_3}[/itex] are planar. Subtract the right side of that equation from both sides.

Suppose [itex]\vec{v_1}[/itex], [itex]\vec{v_2}[/itex], and [itex]\vec{v_3}[/itex] are dependent. Solve that equation for one of the vectors.


Register to reply

Related Discussions
differential equations - linear dependency Calculus & Beyond Homework 3
Coplanar vectors and linear dependance Calculus & Beyond Homework 1
Linear dependency Calculus & Beyond Homework 5
An old new kind of observer dependency: is v > c possible if nobody was looking? Special & General Relativity 3
eigenspace and lin dependency proof Linear & Abstract Algebra 8