Stars and planets made out of antimatter?

In summary, there is currently no observational evidence for the presence of anti-matter in the universe, although it is not ruled out for distant objects beyond our observational capabilities. The belief that the universe is primarily made of matter is based on the absence of anti-matter in cosmic rays and the lack of evidence for undisturbed anti-matter in the present universe. While it is possible that distant galaxies made of anti-matter exist, the lack of interaction with matter in our own galaxy suggests otherwise. Additionally, observations from other galaxies and the early universe also point to the dominance of matter. Therefore, it can be concluded that while anti-matter galaxies cannot be completely ruled out, they are not considered a plausible explanation for the composition of the universe
  • #1
SpaceGuy50
25
0
Can there be stars and planets made out of antimatter?
 
Astronomy news on Phys.org
  • #2
Yes,
From a distance it is impossible to tell the difference. It's not observationally ruled out that distance galaxies can be antimatter.
Where the AM from those galaxies met the real matter form ours there would be some gamma ray signal but intergalactic space is so empty that this would be very small.
 
  • #3
If it's not observationally ruled out, why is there consensus that the universe is primarily made of matter?
 
  • #4
There's no presence of anti-matter in the universe. Any production of antimatter (say in the proton proton chain) usually interacts with regular matter and produces gamma ray energy, annihilating both particles.
 
  • #5
protonchain said:
There's no presence of anti-matter in the universe. Any production of antimatter (say in the proton proton chain) usually interacts with regular matter and produces gamma ray energy, annihilating both particles.

Obviously there aren't any anti-matter objects nearby but if you had a distant galaxy composed of antimatter it wouldn't have any matter to react with.
There would be a matter-antimatter front where interactions would occur but the particle density of intergalactic space is only 1atom/few 10s of m^3 so you wouldn't expect much signal.

I can't remember what the observable limits are, but all sky X-ray surveys aren't all that sensitive.
 
  • #6
mgb_phys said:
Obviously there aren't any anti-matter objects nearby but if you had a distant galaxy composed of antimatter it wouldn't have any matter to react with.
There would be a matter-antimatter front where interactions would occur but the particle density of intergalactic space is only 1atom/few 10s of m^3 so you wouldn't expect much signal.

I can't remember what the observable limits are, but all sky X-ray surveys aren't all that sensitive.

I hear you. It is theoretically possible that if there is no matter within a reasonable gravitationally bound distance, then an antimatter star/galaxy could exist. The only qualm with this is the origin of this anti-matter. At one point very very early in the universe's lifetime there was regular and anti-matter. However it was completely annihilated (the specific term is baryogenesis) as the universe exited the lepton epoch, big bang nucleosynthesis had occurred and the universe had reached the photon-dominated era (photon-dominated vastly due to annihilation). Obviously the reason why matter (baryons) dominated over anti-baryons is still a big mystery as this is peering well before the surface of last scattering and is mostly theoretical, but there's no observational evidence currently for any undisturbed anti-matter in the present universe we all know and love.
 
  • #7
protonchain said:
However it was completely annihilated (the specific term is baryogenesis) as the universe exited the lepton epoch, big bang nucleosynthesis had occurred and the universe had reached the photon-dominated era (photon-dominated vastly due to annihilation).

Obviously the reason why matter (baryons) dominated over anti-baryons is still a big mystery as this is peering well before the surface of last scattering and is mostly theoretical, but there's no observational evidence currently for any undisturbed anti-matter in the present universe we all know and love.

I agree that the idea of distant anti-matter galaxies is 'pushing it a bit'.

However claiming that there is no observational evidence for anti-matter, therefore there must be some not-understood event in the early universe to remove all the anti-matter, therefore there can't be any anti-matter galaxies because all the anti-matter was removed - has a certain circularity to it !

To answer the OP more clearly. There is believed to be no large amounts of anti-matter in the universe however it is not observationally ruled out for distant objects and cannot be ruled out for objects beyond the observational universe.
 
  • #8
Redbelly98 said:
If it's not observationally ruled out, why is there consensus that the universe is primarily made of matter?

Exactly. We can only see billions of light years, which is a pretty tiny part of a perhaps infinite universe.
 
  • #9
One of the lines of evidence against the existence of anti-matter is their absence in cosmic rays. A lot of cosmic rays are from other galaxies, and if a substantial number of them are made out of anti-matter, we would expect at least some antimatter particles. Not one has ever been detected.

It's true, of course, that observations like this do not completely rule out the possibility of antimatter galaxies and such. However, a lot of things are possible, like the existence of undetectable pink bunnies in my bedroom, or the existence of Santa Claus. That doesn't make them plausible; without evidence, things like anti-matter galaxies are wild guesses and nothing more.
 
  • #10
SpaceGuy50 said:
Exactly. We can only see billions of light years, which is a pretty tiny part of a perhaps infinite universe.
We can only deal with the observable universe. The observable universe is our universe.
 
  • #11
I don't completely understand. How did we actually prove that the universe is dominated by matter and not anti-matter?
Is it possible that our galaxy is one such distant galaxy made of matter and the rest of the universe is made of anti-matter such that the matter of our galaxy doesn't interact with the anti-matter?
 
  • #12
Sidnv said:
How did we actually prove that the universe is dominated by matter and not anti-matter?
Our galaxy is matter (by definition), where matter and anti-matter meet you get annihilation and a characteristic x-ray signal. At some point in the space between them the inter stellar medium from the matter galaxy would meet the ISM from the anti-matter galaxy and go bang. It's rather like having two continents with different religions - where they meet you would have a thin strip of land where people are constantly at war.

We don't see any such x-ray signal, however the ISM is very thin (very few particles/m^3) in the space between galaxies so it isn't completely ruled out.
The biggest argument against it is that we detect cosmic rays from other (nearby) galaxies and they are matter. We can also see the signal from the early universe when things were very much closer together and presumably any matter-antimatter interaction would be more common.
 
  • #13
mgb_phys said:
Our galaxy is matter (by definition), where matter and anti-matter meet you get annihilation and a characteristic x-ray signal. We don't see any such x-ray signal, however the ISM is very thin (very few particles/m^3) in the space between galaxies so it isn't completely ruled out.
The biggest argument against it is that we detect cosmic rays from other (nearby) galaxies and they are matter. We can also see the signal from the early universe when things were very much closer together and presumably any matter-antimatter interaction would be more common.
There are no identifiable x-rays in matter-antimatter annihilation of proton and anti-protons.
Most of the energy goes into pions. Electron positron annihilation is very common after proton beta decay of matter, so is not a good signature. Besides, the photons are gamma-boosted to MeV energies whenever the pair is moving. Pi-zero decay photons are meaningless. Nor is neutrino helicity a good signature. Antiprotons are created in our atmosphere by very high energy cosmic rays. The best signature might be the alpha to antialpha particle ratio.
 
  • #14
mgb_phys said:
Obviously there aren't any anti-matter objects nearby but if you had a distant galaxy composed of antimatter it wouldn't have any matter to react with.
There would be a matter-antimatter front where interactions would occur but the particle density of intergalactic space is only 1atom/few 10s of m^3 so you wouldn't expect much signal.

I can't remember what the observable limits are, but all sky X-ray surveys aren't all that sensitive.
Galaxy clusters are surrounded by hot ionized gas with a temp of tens of millions of degrees. so it seems reasonable to assume that if an antimatter cluster were next to a matter cluster that there would be a lot of annihilation occurring at the boundary between them.

I did some quick back of the envelope calculations and came up with this.

according to one website I found the escape velocity of a galaxy cluster is around 600 km/s. in addition to that, these clusters are an average of 20 Mparsecs apart so they are moving away from each other at 1500 km/s. (Hubble constant = 75 km/Mparsec). For the particles to reach the boundary so annihilation can occur the particles from each cluster must be moving at over 2000 km/s. the average velocity of room temp molecules is a few hundred m/s so hydrogen (each atom of which is 16 times less massive) at room temp should move at approximately (200 * √16) 1 km/s. To get a velocity 2000 times higher we need a temp 2000^2 times highter. room temp = 300 kelvin so we need 300*2000^2 kelvin=1.2 billion kelvin = 2.15999954 × 10^9 degrees Fahrenheit
 
Last edited:
  • #15
I fine the concept of anti-matter interesting. If anti-matter were to exist, won't it be going in the opposite direction of the matter?
 
  • #16
dextor said:
I fine the concept of anti-matter interesting. If anti-matter were to exist, won't it be going in the opposite direction of the matter?
1] Uh, what direction is matter moving such that antimatter would move in the opposite direction?

2] Antimatter does exist.

3] Antimatter is exactly the same as matter except that, instead of -ive electrons, it has +ive positrons, and instead of +ive protons, it has -ive antiprotons.
 
  • #17
DaveC426913 said:
We can only deal with the observable universe. The observable universe is our universe.

The observable universe is YOUR universe Dave. Not everyone limits themselves like that.
 
  • #18
fillindablank said:
The observable universe is YOUR universe Dave. Not everyone limits themselves like that.
Well, me and serious scientists.

Philosophers may not limit themselves...
 
  • #19
It's pretty certain that there aren't any stars or planets made out of anti-matter in nearby galaxies. Anything close by would emit a specific type of radiation which we don't see in general.. But...

There *do* seem to be objects near the center of the Milky Way that is generating anti-matter. (Also anti-matter isn't that hard to create. Particle accelerators do it all the time. The thing about anti-matter is that easy to make but it's hard for it to accumulate since the moment it touches matter then bzzzzttttt...)

http://adsabs.harvard.edu/abs/2009MNRAS.392.1115

Now it's likely that there wasn't significant amounts of anti-matter in the early universe. That would cause lots of things to change. We think we more or less know the composition of the early universe from the abundance of helium.

There's another thread that talks about the possibility of distant galaxies being made of anti-matter. I'd be surprised if there is, and I'm pretty sure that we can think of ways of ruling that possibility out directly, but that requires more thinking.
 
  • #20
Also the signature of anti-matter is this...

E=mc^2. When an electron and an anti-electron hit each other and go bzzt... Then it will produce exactly two packets of energy each with mc^2 of energy (it's 511-keV). So you look for that line and that's a signature for anti-electrons.

Also when things get hot enough it goes into the opposite direction, Two packets of energy hit each other and an electron and anti-electron pop out. It's very common.

What's *hard* is to have reactions that don't balance matter and anti-matter. In fact, we haven't directly observed any particle reactions that don't balance matter and anti-matter so the existence of matter is something of a mystery. Presumably there is some particle reaction at very, very high temperatures in which matter and anti-matter don't quite balance.

One of the theoretical insights on this was provided by Andrei Sakharov...

http://en.wikipedia.org/wiki/Baryogenesis

Basically, his argument is that given that matter exists, and assuming that you don't use the argument that "well the universe just started out with more matter than antimatter, so there" then you *must* have three conditions present at some point in the early universe.
 
  • #21
it is thought that the big bang was caused by anti matter comeing into contact with matter which caused an explosion as thay made contact. so this is thought to prove the existence of anti matter
 
  • #22
kingkong01 said:
it is thought that the big bang was caused by anti matter comeing into contact with matter which caused an explosion as thay made contact. so this is thought to prove the existence of anti matter

I remember people reading back in the 1970's that people worked on models like that, but the standard model of cosmology has the universe at some point developing a slight excess of matter. The early universe had lots of matter and anti-matter mixed up with each other, but the standard model has all but a tiny bit of matter annihilate the anti-matter.
 
  • #23
kingkong01 said:
it is thought that the big bang was caused by anti matter comeing into contact with matter which caused an explosion as thay made contact.

The Big Bang was not an explosion. Specifically, it is an expansion of space, not an explosion into pre-existing space.

kingkong01 said:
so this is thought to prove the existence of anti matter

Antimatter can be produced in the laboratory. There's no question as to whether it exists.
 
  • #24
It's rather easy to produce anti-matter. All you have to do is to have more than 2mc^2 energy in one place, and poof... A particle and an anti-particle will appear. The difficulty with anti-matter isn't making it. The hard part is keeping anti-matter from touching matter. This is usually done by keeping things in a magnetic loop.
 
  • #25
Current theory says there was a nearly equal amount of aniti-matter and matter in the very early universe. It all blew up. What is left is matter. We can be pretty confident hardly any anti matter remains. Were there entire galaxies composed of anti matter, they would react energetically with intergalactic gas clouds of ordinary matter. This is not observed. So, either such objects are peculiarly isolated in the universe, or do not exist.
 

1. What is antimatter and how is it different from regular matter?

Antimatter is a form of matter that has the same properties as regular matter, but with opposite electric charge. For example, an antimatter electron, or positron, has a positive charge instead of a negative charge like a regular electron. When matter and antimatter come into contact, they annihilate each other and release a large amount of energy in the form of light.

2. How are stars and planets made out of antimatter?

It is currently unknown if stars and planets can be made entirely out of antimatter. However, it is theorized that in the early universe, there may have been equal amounts of matter and antimatter, and some regions of the universe may have been dominated by antimatter. These regions could have formed stars and planets made of antimatter in the same way that regular matter forms them.

3. Can humans survive on a planet made of antimatter?

It is highly unlikely that humans could survive on a planet made of antimatter. When matter and antimatter come into contact, they annihilate each other, releasing a tremendous amount of energy. This would make the planet inhospitable for life as we know it.

4. How would we be able to detect a planet or star made of antimatter?

One way to detect a planet or star made of antimatter is through its interactions with regular matter. When matter and antimatter come into contact, they produce gamma rays, which can be detected by telescopes. Scientists are also looking for imbalances in cosmic rays, which could indicate the presence of antimatter in the universe.

5. Is there any evidence of stars or planets made of antimatter in the universe?

Currently, there is no concrete evidence of stars or planets made of antimatter in the universe. However, scientists are constantly searching for signs of antimatter through experiments and observations. Some theories suggest that there may be small regions of the universe where antimatter dominates, but more research and evidence is needed to confirm this.

Similar threads

  • Astronomy and Astrophysics
Replies
5
Views
1K
  • Astronomy and Astrophysics
Replies
11
Views
963
  • Astronomy and Astrophysics
Replies
3
Views
1K
  • Astronomy and Astrophysics
Replies
18
Views
1K
  • Astronomy and Astrophysics
Replies
5
Views
784
Replies
61
Views
967
Replies
6
Views
933
Replies
6
Views
751
  • Astronomy and Astrophysics
Replies
12
Views
1K
Back
Top