Scattering field formulation used in DG-FEM

by discworld
Tags: dgfem, field, formulation, scattering
discworld is offline
Apr29-13, 05:35 AM
P: 1

Reading up on simulations of electromagnetic scattering with DG-FEM and trying some myself, I got stuck.
In some of papers I have read, a scattering field formulation is used, in which the total field is linearly decomposed in incident field and scattering field:

[itex] E^{T}=E^{S}+E^{I}[/itex]

And, the 2D equations for the scattering field in a lossless, isotropic medium are:

[itex] \epsilon_{r} \frac{\partial E^{S}}{\partial t} = \nabla \times H^{S} - (\epsilon_{r} - \epsilon_{r}^{I}) \frac{\partial E^{i}}{\partial t} [/itex]
[itex] \mu_{r} \frac{\partial H^{S}}{\partial t} = -\nabla \times E^{S} - (\mu_{r} - \mu_{r}^{I}) \frac{\partial H^{i}}{\partial t} [/itex]

My problem is in the interpretation of the "scattering field" and "incident field" in this context. In every use I see of this formulation [itex]\epsilon_{r}[/itex] is space dependent, while [itex]\epsilon_{r}^{I}[/itex] is a constant - specifically, the incident medium's permittivity (same for the permeability). How can this work for multi-substrate cases, where, if I am thinking correctly, the medium considered incident should change?

(I am quite confused with the affair in general, so any clarifications are quite welcome)
Phys.Org News Partner Physics news on
A 'quantum leap' in encryption technology
Using antineutrinos to monitor nuclear reactors
Bake your own droplet lens

Register to reply

Related Discussions
Hamiltonian formulation of *classical* field theory Classical Physics 7
Magnetic field formulation! Classical Physics 1
Scattering of Waves Formulation (moved to correct forum) Calculus & Beyond Homework 0
Scattering of Waves Formulation Precalculus Mathematics Homework 0
Equivalence between path integral formulation and matrix formulation Quantum Physics 1