Register to reply

Work to Move parallel capacitor Plates

by Typhon4ever
Tags: capacitor, parallel, plates, work
Share this thread:
Typhon4ever
#1
Mar27-13, 04:10 AM
P: 43
Hi, in my book there are two capacitor plates distance x apart (they are kept connected to a constant voltage source). These plates are moved apart to distance 3x. In order to find the work done to move the capacitors apart (using W=F dl=QE dl), my book takes the charge Q of one plate and electric field felt on that one plate and integrates it from x to 3x. Why can't we take the take the charge and electric field felt on both plates and integrate half the distance of x to 3x?
Phys.Org News Partner Physics news on Phys.org
Step lightly: All-optical transistor triggered by single photon promises advances in quantum applications
The unifying framework of symmetry reveals properties of a broad range of physical systems
What time is it in the universe?
Doc Al
#2
Mar27-13, 04:51 AM
Mentor
Doc Al's Avatar
P: 41,476
Quote Quote by Typhon4ever View Post
In order to find the work done to move the capacitors apart (using W=F dl=QE dl), my book takes the charge Q of one plate and electric field felt on that one plate and integrates it from x to 3x.
OK, but Q and E are not constant as the distance changes.

Why can't we take the take the charge and electric field felt on both plates and integrate half the distance of x to 3x?
Who says you can't?
Typhon4ever
#3
Mar27-13, 02:24 PM
P: 43
Quote Quote by Doc Al View Post
OK, but Q and E are not constant as the distance changes.


Who says you can't?
Okay, how would I set up the integration of both plates? My book says the Q on one plate is [itex]\frac{\epsilon_0 A V}{L}[/itex] and the electric field felt on that one plate is [itex]\frac{V}{2L}[/itex] how would I change these to be both plates?

Doc Al
#4
Mar27-13, 02:55 PM
Mentor
Doc Al's Avatar
P: 41,476
Work to Move parallel capacitor Plates

Quote Quote by Typhon4ever View Post
Okay, how would I set up the integration of both plates? My book says the Q on one plate is [itex]\frac{\epsilon_0 A V}{L}[/itex] and the electric field felt on that one plate is [itex]\frac{V}{2L}[/itex] how would I change these to be both plates?
The only thing that would change would be your variable of integration. Since you want to move each plate half the distance, for each plate the position y would relate to the distance between them by L = 2y. Then just integrate from y = x/2 to y = 3x/2. You'll need to multiply your answer by 2, of course.

Compare that to just moving one plate (like in your book). In that case y would be the total distance, so L = y. And you'd integrate from y = x to y = 3x. (And not multiply by 2.)

Each method should give the same answer for the work done.
Typhon4ever
#5
Mar27-13, 03:14 PM
P: 43
Quote Quote by Doc Al View Post
The only thing that would change would be your variable of integration. Since you want to move each plate half the distance, for each plate the position y would relate to the distance between them by L = 2y. Then just integrate from y = x/2 to y = 3x/2. You'll need to multiply your answer by 2, of course.

Compare that to just moving one plate (like in your book). In that case y would be the total distance, so L = y. And you'd integrate from y = x to y = 3x. (And not multiply by 2.)

Each method should give the same answer for the work done.
Oh, I see. You have to focus on one plate. There is no possible way to calculate work done on both plates at once? Is that because the Q between them both is 0?
Doc Al
#6
Mar27-13, 03:36 PM
Mentor
Doc Al's Avatar
P: 41,476
Quote Quote by Typhon4ever View Post
Oh, I see. You have to focus on one plate. There is no possible way to calculate work done on both plates at once?
I'm not sure what you mean. You are calculating the work done on both plates--it's the same on both so that's why you multiply by 2.
Typhon4ever
#7
Mar27-13, 04:07 PM
P: 43
Quote Quote by Doc Al View Post
I'm not sure what you mean. You are calculating the work done on both plates--it's the same on both so that's why you multiply by 2.
What I meant is that is there a way to calculate the total work done without multiplying by two? Or can we only calculate the work on one plate and have to double it.
Doc Al
#8
Mar27-13, 04:19 PM
Mentor
Doc Al's Avatar
P: 41,476
Quote Quote by Typhon4ever View Post
What I meant is that is there a way to calculate the total work done without multiplying by two? Or can we only calculate the work on one plate and have to double it.
Well, you can always do the integration twice! Once for each side.
Typhon4ever
#9
Mar27-13, 04:32 PM
P: 43
Quote Quote by Doc Al View Post
Well, you can always do the integration twice! Once for each side.
Isn't that the same thing as multiplying by 2?
Doc Al
#10
Mar27-13, 05:39 PM
Mentor
Doc Al's Avatar
P: 41,476
Quote Quote by Typhon4ever View Post
Isn't that the same thing as multiplying by 2?
Yep.

But since the two plates experience the same force and movement, why not take advantage of symmetry?
Typhon4ever
#11
Mar27-13, 06:03 PM
P: 43
Thanks!


Register to reply

Related Discussions
Parallel plate capacitor by an electric field between the plates Introductory Physics Homework 1
Parallel Plate Capacitor - Finding E field between plates Introductory Physics Homework 13
Work required to move capacitor plates Introductory Physics Homework 7
Force between parallel plates in a capacitor Introductory Physics Homework 1
Work to move two plates Introductory Physics Homework 13