dimensions of radiation detector and range of secondary particles

by mitch_1211
Tags: dimensions, particles, radiation, range, secondary
mitch_1211 is offline
Oct30-13, 12:03 AM
P: 99
Hi All,

Just reading up on methods of neutron detection and something struck me. Generally these types of detectors are manufactured small enough so the the ranges of the charged particles (usually tritium and alpha) are smaller than the dimensions (so around 100microns or so). This means that the detector is smaller than the range of secondary charged particles created from gamma interactions (typically millimetre range), which is desirable to produce a neutron only spectrum.

I wondered what happened when an electron is generated from a gamma interaction and it goes along its track and reaches the edge of the detector (which is much smaller than its mean free path). Does it simply escape as beta radiation?

The detector in this case is a glass fibre scintillator with Li6 dopant.

Phys.Org News Partner Physics news on Phys.org
Sensitive detection method may help impede illicit nuclear trafficking
CERN: World-record current in a superconductor
Beam on target: CEBAF accelerator achieves 12 GeV commissioning milestone

Register to reply

Related Discussions
Dimensions of Matrices Range (equalities). Linear & Abstract Algebra 5
Range of alpha particles in a silicon detector High Energy, Nuclear, Particle Physics 3
Virtual Particles And Hidden Dimensions Quantum Physics 4
Secondary radiation from alpha particles? High Energy, Nuclear, Particle Physics 6
Detecting and analyzing higher dimensions via the EM radiation field. Beyond the Standard Model 10