## Harmonic motion.

I had a lecture regarding harmonic motion.
he also derived equation related to pendulum motion with extended object and equation is following.(motion is a simple harmonic motion)
d^2θ/dt^2+(RcmMg)θ/I=0

θ(t) = θcos(Ωt)+(ω/Ω)sin(Ωt) where Ω is defined angular frequency oscilation for all types of pendulums and ω is defined angular frequency for all linear motion such as mass and spring system.

I don't get how he derived ω(initial)/Ω...
can anyone explain to me?

 PhysOrg.com physics news on PhysOrg.com >> Iron-platinum alloys could be new-generation hard drives>> Lab sets a new record for creating heralded photons>> Breakthrough calls time on bootleg booze
 Recognitions: Homework Help Welcome to PF; Have you found the general solution to:$$\frac{d^2\theta}{dt^2}+\frac{MgR_{cm}}{I} \theta = 0$$...in a form that does not have that ##\frac{\omega_{i}}{\Omega}## in it? But that does not look like SHM to me. In SHM - the frequency does not change.
 are you talking about $\vartheta$(t)=Acos($\omega$t+$\phi$)?

Recognitions:
Homework Help

## Harmonic motion.

I don't know - was I?
That would be SHM all right.

You wanted to know about: θ(t) = θ cos(Ωt)+(ω/Ω)sin(Ωt)
Looking at it properly I see that the the equation seems to be saying:$$\theta(t)=\frac{\frac{\omega}{\Omega}\sin(\Omega t)}{1-\cos(\Omega t)}$$... which is nothing like SHM right?

 Recognitions: Gold Member Science Advisor What was it attempting to model? That equation of motion and boundary conditions must have come from somewhere. We need to know what the ωi term is supposed to represent. Is it an attempt to take into account the non-linearity of the restoring force in a pendulum (the frequency is amplitude dependent and, hence it is time dependent if it is decaying, for instance)

 Tags harmonic, harmonic motion, pendulum