Please explain the Big Bang and universal expansion

In summary: Big Bang happened in U2, does that mean the edge of the universe is in U2?I'm not sure I understand what you're asking.In summary, the Big Bang is the origin of our universe, which is expanding at the speed of light. However, there may or may not be an edge to the universe.
  • #1
Jocko Homo
133
0
I think I understand the basics of the Big Bang but after trying to explain it to someone else, I've discovered that there are many details lacking in my knowledge. So I have come here in the hopes of alleviating my ignorance...

I understand that in the very early universe, all the energy in the universe was concentrated in comparatively little space, so much so that it formed an opaque plasma which is the source of the cosmic microwave background radiation. What I don't understand is why this is the very last thing we can see. Why can't we see anything past the surface of last scattering after the universe has cooled from its plasma state?

Is there anything past the surface of last scattering? There must be since you'd expect photons to be emitted from the surface...

...which leads to the question of how fast the universe is expanding. How fast is the edge of the universe expanding? In a sense, I'd expect that space is expanding rather slowly since we can still see the surface of last scattering (for now!). However, if the Big Bang is the source of space-time and photons on the edge of the universe are traveling towards this edge, does that mean that space is expanding at the speed of light?

This leads to yet another question: does the universe have an edge? If the geometry of the universe were elliptical then I'd understand how space can expand from a singularity. However, if it's Euclidean, then I don't understand the nature of this expansion. Does it have an edge? If it doesn't then what does it mean for the Big Bang to be the origin of space?

As you can see, I'm actually quite confused by the nature of the Big Bang but I'm eager to fill out my ignorance on the subject. I have a couple more questions but I think this is a good start...

Thank you!
 
Space news on Phys.org
  • #2
Jocko Homo said:
I understand that in the very early universe, all the energy in the universe was concentrated in comparatively little space, so much so that it formed an opaque plasma which is the source of the cosmic microwave background radiation. What I don't understand is why this is the very last thing we can see. Why can't we see anything past the surface of last scattering after the universe has cooled from its plasma state?
Because before then, our universe was opaque. In principle we may find ways to see earlier parts of the universe using non-optical methods.

Jocko Homo said:
Is there anything past the surface of last scattering? There must be since you'd expect photons to be emitted from the surface...
I think the thing you might be misunderstanding here is that the surface of last scattering is a surface in time, not a surface in space. Obviously there has to be stuff before the surface of last scattering: an opaque universe!

Jocko Homo said:
...which leads to the question of how fast the universe is expanding. How fast is the edge of the universe expanding?
We see no edge.
 
  • #3
One way to look at it…One of the challenges to understanding the big bang expansion is that we need to think in terms of more spatial dimensions than we usually deal with. A way around this is to considered a lower dimensional analog, and extrapolate from there…for instance.

Consider a universe, U2, with only 2 spatial dimensions instead of our real universe, U3, with three spatial dimensions. All objects and beings in U2 would be flat 2-D objects and they would occupy an area – part of a surface - as opposed to occupying part of a volume as do the 3-D objects in U3. U2 beings would only be able to move or even look in some combination of the two directions (call them D2-1 and D2-2) spanned by the surface – they would not be able to point or look “up” – to do so would be to point out of the universe. To make things easy, let’s say the U2 surface is that of a sphere. All objects and beings in U2 could move anywhere throughout U2 and they would never reach any edge just as a bug crawling ot the surface of a sphere would never reach a boundary– See Abbott’s “Flatland” for more on this. U2 would be finite but unbounded. Imagine how U2 expands, the spherical surface grows and the direction it expands in is perpendicular to both D2-1 and D2-2. That is, it expands in a direction the U2 beings cannot point to. Similarly, we in U3 cannot move or look or point in the direction our 3-D universe is expanding. And, it’s interesting to consider where the Big Bang originated…Imagine a U2 being trying to point to where the BB occurred.
 
  • #4
After reading Chalnoth's response, I'm beginning to think I don't understand the Big Bang theory at all! Incidentally, are you the same Chalnoth that was on Christian Forums?

Chalnoth said:
Because before then, our universe was opaque. In principle we may find ways to see earlier parts of the universe using non-optical methods.

I think the thing you might be misunderstanding here is that the surface of last scattering is a surface in time, not a surface in space. Obviously there has to be stuff before the surface of last scattering: an opaque universe!
Can this be right?

There is only one temporal dimension in time so there can't be a "surface." Also, the wikipedia page describes the surface of last scattering as a "spherical surface," implying that it's a surface in space...

I've also heard somewhere, from Lawrence Krauss' lecture I think, that plasma reflects electromagnetic radiation and that the surface of last scattering is the radiation reflected off the plasma state universe from long ago. I must admit that I don't know how this is supposed to work...

Finally, if the surface of last scattering is a sphere surrounding the universe, which it is often depicted to be, then that explains why it appears uniform in all directions. If it were from every point in a spherical universe, then we should see different intensities depending on which direction we look...

As you can see, I really have no understanding of the source of the cosmic microwave background radiation...

We see no edge.
I can understand not "seeing" it but there must be one in an expanding Euclidean space, mustn't there?

If there were no space and just a point singularity and it expanded into Euclidean space, how would that space look, geometrically? The only image I can think of is a bounded Euclidean space expanding in all directions but then it would have an edge: the bound. Can this be correct?

Thank you...
 
  • #5
Mechanic said:
One way to look at it…One of the challenges to understanding the big bang expansion is that we need to think in terms of more spatial dimensions than we usually deal with. A way around this is to considered a lower dimensional analog, and extrapolate from there…for instance.

Consider a universe, U2, with only 2 spatial dimensions instead of our real universe, U3, with three spatial dimensions. All objects and beings in U2 would be flat 2-D objects and they would occupy an area – part of a surface - as opposed to occupying part of a volume as do the 3-D objects in U3. U2 beings would only be able to move or even look in some combination of the two directions (call them D2-1 and D2-2) spanned by the surface – they would not be able to point or look “up” – to do so would be to point out of the universe. To make things easy, let’s say the U2 surface is that of a sphere. All objects and beings in U2 could move anywhere throughout U2 and they would never reach any edge just as a bug crawling ot the surface of a sphere would never reach a boundary– See Abbott’s “Flatland” for more on this. U2 would be finite but unbounded. Imagine how U2 expands, the spherical surface grows and the direction it expands in is perpendicular to both D2-1 and D2-2. That is, it expands in a direction the U2 beings cannot point to. Similarly, we in U3 cannot move or look or point in the direction our 3-D universe is expanding. And, it’s interesting to consider where the Big Bang originated…Imagine a U2 being trying to point to where the BB occurred.
I can imagine elliptic space well enough, even in three dimensions. However, from what I've heard, we're pretty sure that the universe we live in is macroscopically Euclidean. How do we reconcile this with space expanding from a singularity?

Thank you...
 
  • #6
Jocko Homo said:
There is only one temporal dimension in time so there can't be a "surface." Also, the wikipedia page describes the surface of last scattering as a "spherical surface," implying that it's a surface in space...
What is meant by a 'surface in time' is simply that the last scattering surface corresponds to photons originating from a specific event in the history of the universe, namely the decoupling of radiation and matter. The photons originating from this event appear to us on Earth as coming from a spherical surface in space (with Earth at the center) -- literally the last scattering surface. The physical distance to the last scattering surface is growing in time, since the CMB photons that reach Earth tomorrow will have originated further out in the universe than those that reached the Earth today.
 
  • #7
Jocko Homo said:
However, from what I've heard, we're pretty sure that the universe we live in is macroscopically Euclidean. How do we reconcile this with space expanding from a singularity?
The universe might be Euclidean if it has a flat geometry. The latest constraints on the geometry of the universe come from WMAP, with the result that the universe is flat to within about a percent. However, the universe might still be closed or open (just obviously not too closed or open). The geometries of these universes are spherical and hyperbolic, respectively. So, at present, all geometries are still in agreement with observations. To make sense of this, if you could only carry out local experiments around your neighborhood, you would conclude that the Earth was flat to high accuracy, when, in reality of course, it is actually a sphere. All of our cosmological data comes from our observable universe, which may well be only a small neighborhood of the universe in its entirety.

With regards to the singularity, it needn't be reconciled since current cosmological models don't address the initial time. The appearance of singularities in physical theories are largely understood as indicating a breakdown of the theory.
 
  • #8
Jocko Homo said:
After reading Chalnoth's response, I'm beginning to think I don't understand the Big Bang theory at all! Incidentally, are you the same Chalnoth that was on Christian Forums?
Indeed, I hanged around there for a little while. Also a few other forums online.

Jocko Homo said:
Can this be right?

There is only one temporal dimension in time so there can't be a "surface." Also, the wikipedia page describes the surface of last scattering as a "spherical surface," implying that it's a surface in space...
My meaning was that it is a surface spread across space separating what happened before from what happened after. Everywhere in our universe, at nearly the exact same time, the universe transitioned from opaque to transparent. That is what I meant by a "surface in time".

Now, we only can see a part of this surface. The surface exists at about 13.7 billion light years in the past, so we only see the portion of it that has taken 13.7 billion light years for the light to reach us. That part, as bapowell mentions, is a sphere. But it is only a cross-section of the whole surface.

Jocko Homo said:
I've also heard somewhere, from Lawrence Krauss' lecture I think, that plasma reflects electromagnetic radiation and that the surface of last scattering is the radiation reflected off the plasma state universe from long ago. I must admit that I don't know how this is supposed to work...
Well, I think you're misunderstanding slightly. The reason why the universe was opaque before the surface of last scattering is that before that time, the electrons had enough energy that they didn't hang around the protons: they ran around freely. This is the definition of a plasma. Light tends to bounce off charged particles, so it can't get very far in a plasma. A photon will be emitted from some interaction, travel a short distance before knocking into an electron or proton, and shoot off in some other direction with a different energy. So you see, you can't get a clear image of anything for much distance within a plasma, because the light is bouncing all over the place.

Once our universe cooled sufficiently, however, it transitioned from a plasma to a gas: the electrons became bound to the protons, and instead of electrons and protons moving around, we had neutral atoms. Neutral atoms only react with light of very specific wavelengths, so once this happened most of the light just went on a straight line forever after.

Jocko Homo said:
Finally, if the surface of last scattering is a sphere surrounding the universe, which it is often depicted to be, then that explains why it appears uniform in all directions. If it were from every point in a spherical universe, then we should see different intensities depending on which direction we look...
Not really. It's a much more subtle point than that. The fact that it's the same in all directions is a statement that the entire visible universe cooled from a plasma to a gas at almost the exact same time. From classic big bang theory, this makes little sense, because much of the surface of last scattering that we can see isn't now and never has been in causal contact. That is to say, light could never have communicated the information about the temperature of one region to the temperature of another.

This is one of the reasons why inflation was proposed: by proposing an accelerated expansion early on, the universe can come to equilibrium quite easily, and there is no problem with it not being in causal contact.
 

1. How did the Big Bang happen?

The Big Bang theory states that the universe began as a singularity, a point of infinite density and temperature. Suddenly, the singularity expanded and matter and energy were created. This rapid expansion is what we refer to as the Big Bang.

2. What caused the Big Bang?

The cause of the Big Bang is still unknown and is a subject of ongoing research. Some theories suggest that it was a result of quantum fluctuations, while others propose that it was triggered by the collision of two universes in a higher-dimensional space.

3. How do we know that the universe is expanding?

Scientists have observed that galaxies are moving away from each other at a faster rate as the distance between them increases. This supports the idea of an expanding universe. Additionally, the cosmic microwave background radiation, leftover energy from the Big Bang, also provides evidence for the expansion of the universe.

4. Is the universe expanding into something?

No, the universe is not expanding into anything. The Big Bang theory suggests that the universe is expanding in all directions, and there is no edge or boundary to it. It is constantly expanding into the space that already exists.

5. Will the universe continue to expand forever?

Based on current observations, it is believed that the expansion of the universe will continue forever. However, the rate of expansion may change over time due to the effects of gravity and dark energy. More research and observations are needed to fully understand the fate of the universe.

Similar threads

Replies
20
Views
2K
Replies
16
Views
1K
  • Cosmology
Replies
25
Views
1K
Replies
10
Views
177
Replies
7
Views
877
Replies
22
Views
2K
Replies
15
Views
1K
Replies
33
Views
1K
Back
Top