Where does potential energy go?

In summary, the potential energy stored in a system, such as a dipole in an electric field or a body in a gravitational field, does not actually go anywhere when the field is removed. Instead, the energy is either used to do work on other systems or it is still present in the form of potential energy in the field itself. Furthermore, the concept of potential energy is based on the idea of doing work against a force, so when the cause of the force is removed, the potential energy also disappears. However, the total energy in the system remains constant, as dictated by the law of conservation of energy.
  • #1
A Dhingra
211
1
Where does the potential energy go??

hello..

One of my friend asked me this question, and i had no answer to it. moreover the professors response to it seemed unsatisfactory.

The question is: Suppose we have a dipole in a uniform External Electric field, which causes it to rotate (or undergo simple harmonic motion). The energy used to bring about the rotation is stored as the potential energy of the system. Let the dipole moment be θ aligned with the electric field. So there is a some amount of energy used to hold it in that position, and as soon as it is released it tends to align itself in the direction of the electric field. What if we remove the Electric field when the dipole was still making θ angle with earlier existing Electric field. Now in absence of an electric field the dipole should not rotate, then where is the energy gone which was stored in it earlier??

This same thing can be taken with respect to gravity. Suppose we have a body at a height h from the surface of Earth then "mgh" amount of energy is stored in the body. If the energy holding it is removed it it falls towards the earth. Now suppose we put the gravity off (lets assume we can). Now the body will not fall... So where does the potential energy stored in the body go??

As an answer to this my professor only said that we can't compare two such systems in presence and absence of gravity or electric field. I have been thinking about this all the while, and the only thing that came to my mind is that we have described the idea of potential energy as the amount of work done against a force acting on the body, when the effect is removed the cause should vanish too... but still it is quite confusing..

So please tell me where does this energy go, if it actually goes somewhere??
Looking forward to your reply..

Any help is appreciated.
 
Physics news on Phys.org
  • #2


So there is a some amount of energy used to hold it in that position.
This is not correct - it does not take any energy to hold something in position.

eg. Your chair expends no energy holding you up.

If we could magically switch gravity off, then it would take some effort to do this. It would take the same effort as to remove the object (you) to infinity (where PE=0).

The electric field is a tad more complex, because a changing field generates a magnetic field, but the principle is the same: the presence of the dipole in the field means it is harder to shut the field down.
 
Last edited:
  • #3


Simon Bridge said:
This is not correct - it does not take any energy to hold something in position.

eg. Your chair expends no energy holding you up.

Isn't the electromagnetic force holding you against the pull of gravity when you sit on the chair??
Simon Bridge said:
If we could magically switch gravity off, then it would take some effort to do this. It would take the same effort as to remove the object (you) to infinity (where PE=0).
So according to this, the potential energy is not lost anywhere, in fact is used to switch off gravity, right?
 
  • #4


A Dhingra said:
Isn't the electromagnetic force holding you against the pull of gravity when you sit on the chair??
Yes - but it does not use any energy to do this.

So according to this, the potential energy is not lost anywhere, in fact is used to switch off gravity, right?
When you switch "external" gravity off, the potential energy increases. (The mass you are watching the PE of has it's own gravity remember.)

For instance ... PE=mgh (being the usual approximation) ... decreasing the potential means bringing the ground closer. Switching gravity off is the same as removing the gound completely ... i.e. the same as taking the ground very far away: so h gets very big - so PE gets very big. (IRL, gravitational potential energy of a mass is the amount of work you need to do to bring the mass from a very long way away to where it is. For gravity, since it is attractive, that is less than zero.)

Therefore, the process of switching gravity off requires you to input energy from someplace else. Notice we don't need to know the details of doing this to know that it takes energy? We can be very confident about this because conservation of energy is the toughest Law we know of.
 
  • #5


Simon Bridge said:
If we could magically switch gravity off, then it would take some effort to do this. It would take the same effort as to remove the object (you) to infinity (where PE=0).
Or you could say that if we could magically switch gravity off then energy would magically disappear. Since this is magic there is no need to be constrained by a law of conservation of energy.

AM
 
  • #6


A Dhingra said:
The question is: Suppose we have a dipole in a uniform External Electric field, which causes it to rotate (or undergo simple harmonic motion). The energy used to bring about the rotation is stored as the potential energy of the system. Let the dipole moment be θ aligned with the electric field. So there is a some amount of energy used to hold it in that position, and as soon as it is released it tends to align itself in the direction of the electric field. What if we remove the Electric field when the dipole was still making θ angle with earlier existing Electric field. Now in absence of an electric field the dipole should not rotate, then where is the energy gone which was stored in it earlier??
The electric field stores a certain amount of energy: http://en.wikipedia.org/wiki/Electric_field#Energy_in_the_electric_field

When you rotate the dipole you increase the E field and thereby increase the energy stored in the field. When you remove the field, work is done, either on matter or on fields in some other location. The energy that went into rotating the charge increases the amount of work done during removal of the field.
 
  • #7


Simon Bridge said:
Yes - but it does not use any energy to do this.

When you switch "external" gravity off, the potential energy increases. (The mass you are watching the PE of has it's own gravity remember.)

For instance ... PE=mgh (being the usual approximation) ... decreasing the potential means bringing the ground closer. Switching gravity off is the same as removing the gound completely ... i.e. the same as taking the ground very far away: so h gets very big - so PE gets very big. (IRL, gravitational potential energy of a mass is the amount of work you need to do to bring the mass from a very long way away to where it is. For gravity, since it is attractive, that is less than zero.)

Therefore, the process of switching gravity off requires you to input energy from someplace else. Notice we don't need to know the details of doing this to know that it takes energy? We can be very confident about this because conservation of energy is the toughest Law we know of.

How do you know that in the first case no work is done but for the second one while removing gravity you will need to do some work??
According to the idea of work , it is done against a force...here what is the force that is opposing the removal of gravity??
 
  • #8


A Dhingra said:
How do you know that in the first case no work is done but for the second one while removing gravity you will need to do some work??
Because there is no change in energy for the first one but there is a change in energy for the second one. Therefore no work is done in the first but work is done in the second.

A Dhingra said:
According to the idea of work , it is done against a force...here what is the force that is opposing the removal of gravity??
Gravity.

By the way, the more general definition of work is that work is a transfer of energy by any mechanism other than heat. So it isn't always necessary to identify a force, although it is easy to do so in this case.
 
Last edited:
  • #9
Andrew Mason said:
Or you could say that if we could magically switch gravity off then energy would magically disappear. Since this is magic there is no need to be constrained by a law of conservation of energy.

AM
Ah well, yes, though that sort of approach does not help OP understand conservation of energy. You are right though - at some point we will end up just having to tell him something like that: not everything we can conceive of exists in Nature.

One of the things that comes up a lot at SF and Fantasy conventions is why so many authors can't let their ultra-tech and magic just do away with these pesky conservation laws as an extension of whatever unexplained approach produced the effect in the first place.

Generally you get better stories if not just anything can happen. Niven, for example, puts a bit of effort in making his tech violate as few laws as possible - transfer booths conserve momentum and energy (albeit in a hand-wavy fashion) for eg. Why not just say that the momentum gets taken care of as part of the "magic" or teleport technology? He does something similar in The Magic Goes Away.

The above would be a Nivinsian constraint on how magically switching gravity off would work.

A Dhingra said:
How do you know that in the first case no work is done but for the second one while removing gravity you will need to do some work??
As DaleSpam says, no change in energy for one case and there is a change in energy for the other.
According to the idea of work , it is done against a force...here what is the force that is opposing the removal of gravity??
By that idea, it requires a motion in relation to a force. In that case - the object is not moving with or against a force. In the second case, the distinct mechanism is not given - we don't know what movement, if any, happens. Fortunately, there is another way of viewing work - as DaleSpam points out.

If we have an anti-gravity machine - this is how you work out how much energy it needs to switch it on. There's http://www.lhup.edu/~dsimanek/museum/unwork.htm#bbe about changing gravity etc around and about... though further discussion of anti-gravity should go in another forum.
 
  • #10


A Dhingra said:
hello..

One of my friend asked me this question, and i had no answer to it. moreover the professors response to it seemed unsatisfactory.

The question is: Suppose we have a dipole in a uniform External Electric field, which causes it to rotate (or undergo simple harmonic motion). The energy used to bring about the rotation is stored as the potential energy of the system. Let the dipole moment be θ aligned with the electric field. So there is a some amount of energy used to hold it in that position, and as soon as it is released it tends to align itself in the direction of the electric field. What if we remove the Electric field when the dipole was still making θ angle with earlier existing Electric field. Now in absence of an electric field the dipole should not rotate, then where is the energy gone which was stored in it earlier??

This same thing can be taken with respect to gravity. Suppose we have a body at a height h from the surface of Earth then "mgh" amount of energy is stored in the body. If the energy holding it is removed it it falls towards the earth. Now suppose we put the gravity off (lets assume we can). Now the body will not fall... So where does the potential energy stored in the body go??

As an answer to this my professor only said that we can't compare two such systems in presence and absence of gravity or electric field. I have been thinking about this all the while, and the only thing that came to my mind is that we have described the idea of potential energy as the amount of work done against a force acting on the body, when the effect is removed the cause should vanish too... but still it is quite confusing..

So please tell me where does this energy go, if it actually goes somewhere??
Looking forward to your reply..

Any help is appreciated.

Let me start by saying that concepts of Potential Energy(PE) and Kinetic Energy(KE) are relative, PE is relative to the existence of the source that is exerting force or torque, KE is relative to the observer.

There is NO meaning of PE at a point or place, PE is always the difference between the PE at two positions. Similarly there is NO meaning of KE of an object, it is not an absolute concept, it is relative to the observer.

In other words, you can choose the PE to be zero at the angle θ, and negative at the center. So, when you remove the force exerting source there is NO problem, but the actual concept is that these energies are relative concepts.

I hope it helps
 
  • #11


Thanks everyone!

I happen to discuss this with my professor (it's another one) and having read and discussed this here i could understand what he explained..
So i got my doubt cleared..

Just to mention: the basic problem was : I was restricting myself to the system and did not see the surroundings where the energy was getting transferred in some or the other form as you all have mentioned.. So the problem is solved!
Thanks a lot..
 

1. Where does potential energy go?

Potential energy is a form of energy that is stored in an object or a system. It is not a physical object, so it does not go anywhere. Instead, it can be converted into other forms of energy, such as kinetic energy, thermal energy, or electrical energy.

2. How is potential energy converted into other forms of energy?

Potential energy can be converted into other forms of energy through a process called energy transfer. This can happen when an object or system undergoes a change in position, shape, or chemical composition. For example, when a ball is dropped from a height, its potential energy is converted into kinetic energy as it falls.

3. Can potential energy be destroyed?

No, according to the law of conservation of energy, energy cannot be created or destroyed, only transformed from one form to another. This means that potential energy cannot be destroyed, but it can be converted into other forms of energy.

4. What factors affect the amount of potential energy an object has?

The amount of potential energy an object has depends on its mass, height, and the force of gravity acting on it. The higher an object is positioned, the more potential energy it has. Additionally, the greater the mass of an object, the more potential energy it has. Lastly, the stronger the force of gravity, the more potential energy an object has.

5. Is potential energy the same as stored energy?

Yes, potential energy is often referred to as stored energy because it is energy that is stored in an object or system. However, potential energy can only be released or transferred into other forms of energy through a change in the object or system.

Similar threads

Replies
10
Views
947
Replies
2
Views
763
Replies
19
Views
994
Replies
4
Views
998
Replies
6
Views
10K
Replies
27
Views
11K
Replies
9
Views
2K
Replies
13
Views
6K
Replies
5
Views
876
Back
Top