D Orbitals: 5 or 6? Exploring the Truth Behind the Number of D Orbitals

  • Thread starter HellFeuer
  • Start date
  • Tags
    Orbitals
In summary: I will be happy to help you out. In summary, there are six d-orbitals, and the d z-square orbital is a linear combination of two of these.
  • #1
HellFeuer
1
0
d orbitals.. 5 or 6?

hey

i always thought ther wer 5 d orbitals corresponding 2 quantum number m = -2, -1,..., 2

now i read somwhere that ther wud actually be 6 possible sollutions to schrodigner's equation.. i.e. six d orbitals, and th d z-square orbital is a linear combination of two of these 6, giving effectively 5.
it also says that this combination is done because the two orbitals that are combined 'have no independant existence'

firstly,, is this true? (th place i read this is not exactly reliable)

secondly, if it is, then how can 2 of these 6 orbitals 'have no independant existence'? wt does this mean?
if it does not hav independant existence, then wt meaning is ther 2 calling it a separate orbital
also, if ther wer 6 orbitals, shudnt ther be a possibility of 12 d electrons?

i thot that every valid solution to schrodingers equation(provided it satisfies those 3-4 constraints, continuos, finite etc) is in fact physicaly possible??

thnx.. i know nothin of quantum mechanics so sorry if i asked some ****
HellFeuer
 
Physics news on Phys.org
  • #2
HellFeuer said:
hey

i always thought ther wer 5 d orbitals corresponding 2 quantum number m = -2, -1,..., 2


5 should be indeed.


HellFeuer said:
now i read somwhere that ther wud actually be 6 possible sollutions to schrodigner's equation.. i.e. six d orbitals, and th d z-square orbital is a linear combination of two of these 6, giving effectively 5.
it also says that this combination is done because the two orbitals that are combined 'have no independant existence'

firstly,, is this true? (th place i read this is not exactly reliable)

secondly, if it is, then how can 2 of these 6 orbitals 'have no independant existence'? wt does this mean?
if it does not hav independant existence, then wt meaning is ther 2 calling it a separate orbital
also, if ther wer 6 orbitals, shudnt ther be a possibility of 12 d electrons?

i thot that every valid solution to schrodingers equation(provided it satisfies those 3-4 constraints, continuos, finite etc) is in fact physicaly possible??

thnx.. i know nothin of quantum mechanics so sorry if i asked some ****
HellFeuer

WHERE??


Daniel.
 
  • #3
you can always make linear combinations of wave functions, because the Schrodinger equation is linear. If you write down two different wave functions psi1 and psi2, with the same energy value (ie, both have the same n value for hydrogenic orbitals), then a*psi1 + b*psi2 is a solution with the same energy value, for any constants a and b.

The usual px, py, pz orbitals that you see in chemistry textbooks are linear combinations of the l=1 states that you normally get when solving the hydrogen atom.

Making a linear combination of solutions does not give you "more" solutions, because the solutions form a complete set. You can form any state with l=2 by taking a linear combination of d-orbitals (ie. you can form the states m = +2,+1,0,-1,-2 projected on any axis you want by adding up the usual d-states). So to answer your question, there really are an infinite number of solutions with l = 2, because you can combine solutions. However, you only need five solutions because then you can form any other solution.
 
  • #4
kanato! you seem like someone getting the picture with the linear algebra involved in orbital theories!

have you seen any different linear combinations of the d orbitals than the usual xy,yz,zx,x2-y2 and z2 set? Hope this is not too OT... but I would like to see what it looked like if one symmetry-adapted the 5 d-orbitals to e.g. tetrahedral symmetry, i.e. one set (don't remember if it was the t or the e set) having tetrahedral symmetry and the other set actually having no tetrahedral symmetry (which would be nonbonding in the tetrahedral field). In other words I would like to have some sort of picture of what the d orbitals would look like in order to account for the t+e splitting in a tetrahedral ligand field, some sort of purely d-orbital precursors to the t and e set that are obtained after bonding with the ligands.

Hope my question is understandable. And if it's OT please send me a pm if you can tell me more!
My thought was just: if on is free to decide which linearly independent set of orbitals one uses to describe, why not explain e.g. tetrahedral bonding with a representation of the d-orbitals which clearly shows one set with tetrahedral symmetry and one set without?
 
  • #5
What you really should ask yourself is : why are there 5 d-orbitals that each correspond to this quantumnumber ?

euuurrr


marlon
 

1. What are D orbitals?

D orbitals are a type of atomic orbital, which are regions of space around an atomic nucleus where there is a high probability of finding electrons. D orbitals are associated with the angular momentum quantum number l=2 and can hold a maximum of 10 electrons.

2. How many D orbitals are there?

There are 5 D orbitals, labeled as dxy, dxz, dyz, dx2-y2, and dz2. Each orbital has a different orientation in space and can hold a maximum of 2 electrons.

3. Are there 5 or 6 D orbitals?

There are 5 D orbitals, despite the common misconception that there are 6. This is because the dz2 orbital is often referred to as both dz2 and dz2-y2, causing confusion. However, these are just different representations of the same orbital.

4. What is the difference between D and S orbitals?

The main difference between D and S orbitals is their shape and orientation. D orbitals have a more complex shape, while S orbitals have a spherical shape. D orbitals also have a higher energy level compared to S orbitals.

5. How are D orbitals filled with electrons?

According to the Aufbau principle, electrons fill orbitals in order of increasing energy levels. This means that the 5 D orbitals will be filled after the 4s orbital in a neutral atom. The 10 electrons in D orbitals will fill each orbital with one electron before pairing up.

Similar threads

  • Beyond the Standard Models
11
Replies
350
Views
47K
Replies
5
Views
2K
  • MATLAB, Maple, Mathematica, LaTeX
Replies
1
Views
2K
Back
Top