## Concentration of water vs. equilibrium

Hi,
I understand from calculation that the molar concentration of Pure water is 55.5 moles/Liter
Then how come in equilibrium reactions when calculation the dissociation constant, we say that the concentration of water is 1 Molar? This seems like a huge difference to me? What is it I need to understand here?

 PhysOrg.com chemistry news on PhysOrg.com >> Attacking MRSA with metals from antibacterial clays>> Femtosecond 'snapshots' reveal a dramatic bond tightening in photo-excited gold complexes>> Beautiful 'flowers' self-assemble in a beaker

Recognitions:
 Quote by christian0710 Then how come in equilibrium reactions when calculation the dissociation constant, we say that the concentration of water is 1 Molar?
This is not correct.
What enters the equilibrium constant is the ratio of the concentration of a substance c relative to some standard concentration ##c_0##, i.e. ##c/c_0##. For diluted substances this standard concentration is ##c_0=##1 mol/l (molarity) or 1 mol/ kg (molality) or the like (or more precisely the behaviour at infinite dilution extrapolated to a concentration of 1 mol/l). For solvents etc. we use as a standard state the pure substance, i.e. ##c_0=55,5## mol/l for water. In a dilute solution, the concentration ##c## of water is to an excellent extent equal to ##c_0## so that we can set the ratio equal to 1, at least for calculations with chemical precision.

 Quote by DrDu This is not correct. What enters the equilibrium constant is the ratio of the concentration of a substance c relative to some standard concentration ##c_0##, i.e. ##c/c_0##. For diluted substances this standard concentration is ##c_0=##1 mol/l (molarity) or 1 mol/ kg (molality) or the like (or more precisely the behaviour at infinite dilution extrapolated to a concentration of 1 mol/l). For solvents etc. we use as a standard state the pure substance, i.e. ##c_0=55,5## mol/l for water. In a dilute solution, the concentration ##c## of water is to an excellent extent equal to ##c_0## so that we can set the ratio equal to 1, at least for calculations with chemical precision.
Okay, so I might understand what you are saying in 2 possible ways, which of the following two ways is the correct?

So if we are measuring the equilibrium H2O + CO2 ⇔ H(+) + HCO3(-) which is a reaction taking place in the blood of a person, then the concentration of water is only 1Molar because a) we have a diluted solution, where water is the solvent so [H2O] =1M ?
or b) the ratio between the initial concentration of water and final concentration ( at products) is almost the same so the ratio between the two concentrations is 1?

Recognitions:

## Concentration of water vs. equilibrium

The equilibrium constant is a dimensionless quantity as it only depends on the ratios of concentrations to their respective standard concentrations.