What is special about the Avogadro's Constant ?

  • Thread starter Yh Hoo
  • Start date
  • Tags
    Constant
In summary: There is an energy change involved when these particles are combined, vs. when they are isolated. This energy change contributes to the mass of the atom, via the famous relation E=mc2.
  • #1
Yh Hoo
73
0
What is special about the Avogadro's Constant ??

6.0221367x10^23 is the avogrado's constant. Does this amount of substances just mean that 6.0221367x10^23 molecules or atoms in gaseous state arrangement will occupy a constant volume provided they are under the same condition(same temperature and pressure) ??
Is it true that the avogadro's constant also imply that with this amount of atoms of same element, they could contribute a mass(g) of exactly a whole number ??
 
Chemistry news on Phys.org
  • #2


Yh Hoo said:
Is it true that the avogadro's constant also imply that with this amount of atoms of same element, they could contribute a mass(g) of exactly a whole number ??

No. It will be a mass in g identical to the average atom mass in amu. The latter is a whole number only for a 12C isotope.
 
Last edited:
  • #3


sorry why it will not be a whole number ? wasn't chemist found that 6.02^23 hydrogen atoms will make up 1 g ? so for the atoms of other element which is n times heavier than one-twelfth of the mass of a carbon-12 isotope(or the mass of a hydrogen-1 atom = 1.66 x 10^-27 kg) supposed to have a mass of (n x no. of times heavier than 1/12 of a carbon-12 isotope ) right ? ?
 
  • #4


Yh Hoo said:
sorry why it will not be a whole number ?

Because real elements are mixtures of isotopes, and because of the mass deficit (AKA binding energy) which makes even "perfect" isotopes like 16O to have mass different from exactly 16 amu.
 
  • #5


The mol is really just a proportionality constant to convert amu to grams.
 
  • #6


But It looks like Borek already answered that, sorry didn't see your posts, computer page redirected me to advanced reply.
 
  • #7


Borek said:
Because real elements are mixtures of isotopes, and because of the mass deficit (AKA binding energy) which makes even "perfect" isotopes like 16O to have mass different from exactly 16 amu.
may i ask what does it means by the mass deficit ? and you mentioned that oxygen-16 isotope has a mass different from exactly 16 a.m.u. but i think oxygen-16 isotope should have a mass of exactly equal to 16.a.m.u. Could you please refer to the attachment i posted and help me to mark my calculation? thanks sir!
 

Attachments

  • IMG.jpg
    IMG.jpg
    21.7 KB · Views: 534
  • #9


a new question, is it true that the mass of an atom(atomic mass) is equal to the total mass of of all the protons, neutrons and electrons in that atom ?? and is that the mass of a atom is always constant ??
 
  • #10


Yh Hoo said:
a new question, is it true that the mass of an atom(atomic mass) is equal to the total mass of of all the protons, neutrons and electrons in that atom ??

No, because of the mass deficit. If you will continue to ignore information you are given nobody will be willing to help you.
 
  • #11


Borek said:
No, because of the mass deficit. If you will continue to ignore information you are given nobody will be willing to help you.

im sorry about that because frankly I am a A-level student. I have been studying the piece of information that you gave me . Up to this stage i can almost understand the mass defect. But i am still not satisfied with the statement"No other nuclides other than the carbon-12 isotopes have exactly a whole number relative isotopic mass in the scale taking 1/12 of the mass of a carbon-12 isotopes as a standard. ". Because i found that since the relative isotopic mass of nuclides of different isotopes is just a ratio compared to 1u, then there will be other nuclides having a whole number OR non-whole number relative isotopic mass.For example the mass of an oxygen-16 isotope is exactly 16 times greater than 1u. I have showed some evidence by myself. Could you please help me to verify my attachment? Moreover i think that the rest mass of protons,neutron and electron are always constant while static but while moving as in real word the mass decreases. My question is what is the extent the mass will drop to and will it be fluctuating with time ? i really need your help
 
  • #12


Yh Hoo said:
.For example the mass of an oxygen-16 isotope is exactly 16 times greater than 1u.

According to the links below, the mass of O-16 is 15.9949 u. Close to 16 u, but not exactly.

http://www.wolframalpha.com/entities/isotopes/oxygen_16/5x/ju/gs/
http://en.wikipedia.org/wiki/Oxygen-16#Table

It is not simply a matter of adding the masses of the protons, neutrons, and electrons. There is an energy change when these particles are combined vs. when they are isolated. The energy change will contribute to the mass of the atom, via the famous relation E=mc2.

If not for this mass-energy equivalence, there would be no energy given off in nuclear reactions.
 
Last edited by a moderator:
  • #13


Redbelly98 said:
According to the links below, the mass of O-16 is 15.9949 u. Close to 16 u, but not exactly.
It is not simply a matter of adding the masses of the protons, neutrons, and electrons. There is an energy change when these particles are combined vs. when they are isolated. The energy change will contribute to the mass of the atom, via the famous relation E=mc2.

If not for this mass-energy equivalence, there would be no energy given off in nuclear reactions.

Thanks so much for your explanation. But could i say that my above attachment is only correct when both the carbon-12 isotope and oxygen-16 isotope are under the same condition, for example both are in isolated form, same temperature and all other possible factors that affects the mass? And one more question, since you said that mass of the atoms are different when in different forms, because of this the unified atomic mass units is apparently a constant but precisely it is a value that keeps on fluctuating at but only at the position of the uncertainties. the same things for the relative isotopic mass of every isotope. They are always fluctuating but only with an extremely minute deficit, is it true??
 
Last edited:
  • #14


Can anyone please show me the working on calculation of relative isotopic mass of any isotope?? thanks a lot!
 
  • #15


Please start a new thread.
 

What is Avogadro's Constant?

Avogadro's Constant, also known as Avogadro's number, is a numerical value that represents the number of particles (atoms, molecules, ions, etc.) in one mole of a substance. It is denoted by the symbol "NA" and its value is approximately 6.022 x 10^23.

Why is Avogadro's Constant important?

Avogadro's Constant is important because it allows scientists to accurately convert between the macroscopic world (mass, volume, etc.) and the microscopic world (number of particles). It is used in many calculations in chemistry, such as determining the molar mass of a substance or the number of atoms in a sample.

How was Avogadro's Constant discovered?

Avogadro's Constant was first proposed by Italian scientist Amedeo Avogadro in 1811. He hypothesized that equal volumes of different gases at the same temperature and pressure contain the same number of particles. However, it wasn't until 1865 that scientist Johann Josef Loschmidt accurately measured this number, which is now known as Avogadro's Constant.

Is Avogadro's Constant always the same?

Yes, Avogadro's Constant is a fundamental constant of nature and is always the same. It does not change depending on the substance or the conditions. Its value is fixed and is used in many scientific calculations.

How is Avogadro's Constant experimentally determined?

Avogadro's Constant can be experimentally determined using various methods, such as counting the number of particles in a known volume of gas, measuring the volume of a single particle, or using X-ray crystallography. However, the most accurate method currently used involves using the mass of a single crystal of a pure element and determining the number of particles in that crystal.

Similar threads

  • Chemistry
Replies
1
Views
784
Replies
4
Views
2K
Replies
6
Views
5K
Replies
6
Views
1K
Replies
8
Views
5K
Replies
19
Views
31K
  • Materials and Chemical Engineering
Replies
11
Views
3K
Replies
7
Views
835
Replies
2
Views
2K
Replies
4
Views
1K
Back
Top