Measuring Distances Across Billions of Light Years

In summary, astronomers use type IA supernovae to measure large scale distances by determining the brightness of the supernova and comparing it to measurements of other types of supernovae.
  • #1
superpaul3000
62
1
I hear a lot about astronomers using type IA supernovae to accurately measure large scale distances over billions of light years to do things like measure the rate of expansion of the universe. I doubt that the calculation of this distance is simply based on the inverse square law. So my question is what other factors are used in calculating that distance? One I can think of off the top of my head is from SR we know that objects traveling quickly away from us have their emitted light red shifted and luminosity reduced. We can see the red shift in these distant galaxies but do the astronomers account for the proper amount of reduction in light intensity when calculating these distances?
 
Space news on Phys.org
  • #2


I think they are measuring light frequency not light intensity or amplitude.
 
  • #3


Tanelorn said:
I think they are measuring light frequency not light intensity or amplitude.

I think you can only measure the relative velocity of an object by measuring frequency. Thats how we know that the further away a galaxy is from us the faster it is moving and thus the universe is expanding. However, in order to measure distance you need light intensity, the inverse square law, and some other factors. I guess you would use the frequency to determine velocity and then velocity to determine the expected reduction in brightness. That is what I am trying to confirm. I also want to know if there are additional factors.
 
  • #4


Brightness is proportional to the inverse of the product D2(1+z)2. However, the "D" here is special: it's the integral from the time the light was emitted to now of (c/a)dt, where "a" is the expansion parameter (a = 1 now, and was <1 at earlier times).
 
  • #5


superpaul3000 said:
I hear a lot about astronomers using type IA supernovae to accurately measure large scale distances over billions of light years to do things like measure the rate of expansion of the universe. I doubt that the calculation of this distance is simply based on the inverse square law.
Well, yes, it is a bit more complicated than that. Basically, the analysis takes three stages:
1. A redshift is measured. This is relatively easy by looking at specific emission lines, and usually redshifts are very robust.
2. Regularize the supernova. Basically, not all supernovas are the same: some are brighter than others at the source. But fortunately for us, the intrinsic brightness of supernovae appears to be strongly related to other parameters, such as how long they last (brighter supernovae tend to last longer). So empirically we correlate the intrinsic brightness of the supernovae with other estimates.
3. Use General Relativity combined with a model for the expansion to compute how much the supernova will have dimmed based upon its redshift. This calculation is known as the "luminosity distance", and is compared against the measured brightness of the supernova. The comparison between the calculated luminosity distance and the measured brightness is then used to determine the parameters of the model used to calculate the luminosity distance.
 

1. How do scientists measure distances across billions of light years?

Scientists use a variety of methods to measure distances across billions of light years, including parallax measurements, redshift measurements, and standard candles such as Type Ia supernovae. These methods rely on observations of objects with known properties and comparing them to the objects being measured.

2. What is the unit of measurement used for distances across billions of light years?

The most commonly used unit of measurement for distances across billions of light years is the light year. One light year is equal to about 9.46 trillion kilometers, or about 5.88 trillion miles.

3. How accurate are measurements of distances across billions of light years?

The accuracy of measurements of distances across billions of light years varies depending on the method used and the precision of the instruments. In general, measurements can be accurate within a few percentage points.

4. What are some challenges in measuring distances across billions of light years?

One of the main challenges in measuring distances across billions of light years is the vastness of the scale. It can be difficult to accurately measure objects that are so far away, and there are also limitations in the technology and instruments used to make these measurements.

5. How do these distance measurements contribute to our understanding of the universe?

Measuring distances across billions of light years allows scientists to map out the structure of the universe and understand how it has evolved over time. It also helps us better understand the properties of dark matter and dark energy, which make up the majority of the universe but remain largely mysterious.

Similar threads

Replies
4
Views
2K
Replies
12
Views
1K
  • Cosmology
Replies
8
Views
1K
Replies
23
Views
3K
Replies
15
Views
2K
Replies
3
Views
1K
  • Cosmology
Replies
14
Views
1K
Replies
2
Views
1K
Replies
13
Views
2K
Replies
57
Views
3K
Back
Top