Can there be a place in space where no gravity exists?

In summary, on the assumption that gravity=geometry, it is possible that there exists a place in spacetime where no effects of gravity are felt.
  • #1
kamermans
4
0
Today I was thinking about the possibility that there could exist a place (or point) in spacetime where [STRIKE]no effects of gravity are felt[/STRIKE] gravitational fields cannot be detected (edited for clarification). Most of the thoughts I've had say this is impossible.

Here are my ideas:

No, it's impossible:
  1. Since gravity is an effect on spacetime and its effects are extremely far-reaching, perhaps the spacetime is itself simply a byproduct of gravity, in which case without any gravity there is no spacetime.
  2. Perhaps dark matter is imparting the gravitational force that makes up the underlying blanket of spacetime, and this could have existed before the big bang (in the case that it's real matter in another universe), meaning there could be gravity far past the expansion point of spacetime. Similarly, if the universe in our dimension is infinite, it probably loops back on itself, in which case there is no "end", or place in spacetime where it's unlikely that any particle has reached or will reach with any frequency.
  3. If no gravity exists in the place, than how can you even quantify space, or time, so perhaps this question is irrational.

Yes, it's possible:
  1. If gravity has a force-carrier particle (graviton), then perhaps this question is the same as "is there a place in spacetime where no light (well, photons/EM radiation really) is/are detectable from mass-bearing objects?". With this reasoning, I would think that if you travel far enough, you could get to a place where it's improbable that any graviton would hit you in a reasonable amount of time (say, one day).

Btw, the thing that got me thinking about this is the discovery that the our galaxy is likely to collide with Andromeda, meaning the gravity is strong enough in "empty space" to pull two galaxies together across over 2 million light years in 4 billion years, which I'd say is pretty incredible!
 
Last edited:
Space news on Phys.org
  • #2
According to the prevailing ideas about it, gravity=geometry.

Your question amounts to asking about a "place in space where no geometry exists?"

A freely falling observer in a uniform grav. field does not FEEL any "effect" of gravity, if I understand what you asked about "feeling effects".
Locally it is just the same as being in a region where the geometry is flat---has zero curvature.

There is always geometry, and at places it can certainly have zero curvature. And since geometry is everywhere, gravity (which is nothing but geometry) is everywhere. The gravitational field IS "place". It is the geometry upon which the other fields are defined.

My two cents anyway.
 
  • #3
Thanks for the reply! The essence of my question was whether you could escape all traces of gravity, such that every mass-bearing particle was so far away, that no traces of gravity exist (on average).

Very interesting reply - this is sort of the same train of thought I had; so under the assumption that gravity=geometry (of spacetime), considering a place where there is no gravity is irrational, since "place" by definition is a location in space and time (sort of my point in cons #1 and #3).
 
  • #4
At the quantum level, think about the analogy with photons of the EM field. One cannot say of a place that "no photon is there".

One can only say that no photon of some range of wavelength is DETECTED.

Whether or not a detection event occurs is probabilistic and depends on things like the size of the antenna or (more generally) the sensitivity of the detector at various wavelengths. And the energy a photon carries is inversely proportional to wavelength so longer-wave quanta are feebler and harder to detect.

Presumably some gravitons have wavelengths the size of the solar system and some have wavelengths the size of the Milkyway galaxy. Ripples caused by orbiting bodies. To have any chance to detect them one would need detectors on that order of size. And incredible sensitivity.

But whether or not one detected them one could not say that they were not there, since a detection event is indeterminate. There can be a ripple in the field but your detector may or may not feel it.

Probably simpler to stay at classical level on this one. Going to quantum level and talking about gravitons (the quanta of the geometry field) raises a bunch of new issues.
 
Last edited:
  • #5
Indeed, that makes sense. So no matter how far you go out, away from matter, the chances that you will be "hit" by a photon or graviton are probabilistic, not deterministic (granted, at the quantum level, they are non-deterministic anyway), so you can never say that a graviton will no be detected there, you can only say that the probability is extremely low; additionally, since gravity (presumably via gravitons) travels at the speed of light without losing energy, even if only one graviton was transmitted, it could still hit that spot, and you can't escape it without exceeding (or circumventing) the speed of light.
 
  • #6
kamermans said:
Indeed, that makes sense. So no matter how far you go out, away from matter, the chances that you will be "hit" by a photon or graviton are probabilistic, not deterministic (granted, at the quantum level, they are non-deterministic anyway), so you can never say that a graviton will no be detected there, you can only say that the probability is extremely low; additionally, since gravity (presumably via gravitons) travels at the speed of light without losing energy, even if only one graviton was transmitted, it could still hit that spot, and you can't escape it without exceeding (or circumventing) the speed of light.

I think I agree with the spirit of what you are saying. To say that "geometry is everywhere" is essentially a tautology (maybe it is whereness :biggrin:).

You might enjoy reading some of the QG research literature. The abbreviation can stand for either or both quantum gravity and quantum geometry. And a lot of the research activity is in applying QG to cosmology, which means getting rid of the singularity and modeling various possibilities of what may have actually happened around the start of expansion.

The graviton, as a mathematical concept, does not come into QG at a fundamental (non-perturbative) level. It only comes into the picture when you fix a background geometry and study perturbations of it (eg ripples imposed on a flat background). That is a useful approximate analysis. But the most basic QG theory is non-perturbative and does not represent geometry by a bunch of gravitons. Rather, by a network of geometrical measurements, bits of volume, area, angle, etc. These are what is uncertain and it is their evolution that is governed by the quantum model. It is an interesting research area, but off-hand I can't think of a good paper to recommend as introduction.
 
Last edited:
  • #7
To say that "geometry is everywhere" is essentially a tautology (maybe it is whereness).

lol - indeed, this solves my problem! Whereness :biggrin:!

Thanks for the suggested reading. I'm an entrepreneur/developer by day, but I may find some time for this fun stuff at night :)
 

1. Can there be a place in space where no gravity exists?

Yes, there are places in space where gravity does not exist or is extremely weak. These areas are called "zero gravity" or "microgravity" environments. However, they are not completely free of gravity, as gravity is a fundamental force in the universe.

2. How is zero gravity possible in space?

Zero gravity is possible in space because of the concept of freefall. Objects in space are constantly falling towards the nearest massive object, such as a planet or star. However, since they are also moving forward at a high speed, they never actually reach the surface and appear to be floating in a state of weightlessness.

3. Can humans survive in an environment with no gravity?

While humans can adapt to zero gravity environments, long-term exposure can have negative effects on the body such as muscle atrophy and bone density loss. Therefore, astronauts living and working in space often have to exercise and use special equipment to mitigate these effects.

4. Are there any dangers associated with zero gravity in space?

Yes, there are some dangers associated with zero gravity in space. Without the force of gravity, bodily fluids can shift towards the head, causing headaches, congestion, and other discomforts. There is also the risk of objects floating freely and potentially causing harm to astronauts or equipment.

5. Can we create zero gravity on Earth?

While we cannot completely eliminate gravity on Earth, we can simulate zero gravity environments through the use of parabolic flights, drop towers, and water immersion tanks. These techniques are often used for research and training purposes, but they only provide short periods of weightlessness before gravity takes over again.

Similar threads

Replies
21
Views
1K
Replies
25
Views
2K
Replies
11
Views
455
Replies
6
Views
1K
Replies
2
Views
784
Replies
3
Views
62
  • Cosmology
Replies
6
Views
1K
Replies
2
Views
2K
Replies
19
Views
2K
Replies
11
Views
2K
Back
Top