Dirac Spinor

by ChrisVer
Tags: dirac, spinor
ChrisVer is offline
Feb4-14, 10:36 AM
P: 376
Hello. I would like to ask something that will help me understand a little better how we work with Dirac spinors' inputs....
I know that the dirac equation has 4 independent solutions, and for motionless particles, the (spinor) solutions are:
[itex] u_{+}=(1,0,0,0)^{T} [/itex] electron +1/2
[itex] u_{-}=(0,1,0,0)^{T} [/itex] electron -1/2
[itex] v_{+}=(0,0,1,0)^{T} [/itex] positron +1/2
[itex] v_{-}=(0,0,0,1)^{T} [/itex] positron -1/2

Now suppose that I write a solution as:
[itex] Ψ=(1,0,0,1)^{Τ}[/itex]
Does that mean that I'm having 2 particles (one positron and one electron) involved?
Phys.Org News Partner Physics news on Phys.org
Physicists consider implications of recent revelations about the universe's first light
Vacuum ultraviolet lamp of the future created in Japan
Grasp of SQUIDs dynamics facilitates eavesdropping
Bill_K is online now
Feb4-14, 01:56 PM
Sci Advisor
Bill_K's Avatar
P: 3,857
In the single-particle first quantized theory, the four components of the spinor represent particle states with spin ħ/2 and energy E. So just as ψ = (1,1,0,0) represents a state with equal probability of the particle having spin up and down, so ψ = (1,0,0,1) represents a state with equal probability of the particle having spin up energy +E, and spin down energy -E. In the framework of this theory there is no antiparticle.

Register to reply

Related Discussions
Dirac spinor and antiparticles High Energy, Nuclear, Particle Physics 5
Dirac Spinor, Weyl Spinor, Majorana Spinor Quantum Physics 0
Dirac spinor question High Energy, Nuclear, Particle Physics 1
Dirac spinor and state vector Quantum Physics 7
Dirac Spinor Algebra Quantum Physics 8