## how the inner product changes under non-linear transformation

Hi,

if we suppose x and y are two elements of some vector space V (say ℝn), and if we consider a linear function f:V→V', we know that the inner product of the transformed vectors is given by: $$\left\langle f\mathbf{x} , f\mathbf{y} \right\rangle = \left\langle \mathbf{x} , \overline{f}f\mathbf{y} \right\rangle = \left\langle \overline{f}f\mathbf{x} , \mathbf{y} \right\rangle$$ where $\overline{f}$ is the adjoint operator of $f$.

What can we say about $\left\langle f\mathbf{x} , f\mathbf{y} \right\rangle$ when f is non-linear, for example a diffeomorphism ?
 PhysOrg.com science news on PhysOrg.com >> King Richard III found in 'untidy lozenge-shaped grave'>> Google Drive sports new view and scan enhancements>> Researcher admits mistakes in stem cell study
 I admit I'm not well versed in stuff with manifolds and such, but isn't a diffeomorphism basically a way of mapping positions on one manifold to positions on another? If so, then ##f## is just the Jacobian of the mapping, and it is inherently dependent on position within the manifold. It's important to note that positions won't obey this transformation law, only the full, nonlinear transformation.
 Hi Muphrid, thanks for the answer. That's exactly what I wanted to know.