What is the elusive origin of gravity?

In summary, the origin of gravity remains elusive and is still a topic of much debate and speculation among physicists. While some theories, such as the Big Bang, attempt to explain the origin of gravity, there is no definitive answer. Gravity is often described as the way matter affects geometry, but this concept raises further questions and puzzles about the nature of gravity and its relationship to the other fundamental forces. Despite our current understanding of gravity through theories like General Relativity, there is still much to be explored and understood about this mysterious force.
  • #1
wolram
Gold Member
Dearly Missed
4,446
558
I guess most people know what it does but, AFAIK no one as yet knows the origin (other than the BB) of how gravity came to be or what it (is), why is the origin of gravity so elusive?
 
Space news on Phys.org
  • #2
Hello Wolram

To begin with the BB is only a theory and not a fact.

All info points to an infinite universe with endless time, space and matter. If this is correct than Gravity has no Origin and therefore would seem instant.
 
  • #3
why is the origin of gravity so elusive?
Beacause it's right under our noses.
 
  • #4
castlegates said:
Beacause it's right under our noses.

I'll have you know that my mustache is not, in fact, the origin of gravity. :wink:
 
  • #5
Parlyne said:
I'll have you know that my mustache is not, in fact, the origin of gravity. :wink:
What is your mustache doing right under my nose?
 
  • #6
Sundance said:
All info points to an infinite universe with endless time, space and matter.
What info?
 
  • #7
wolram said:
I guess most people know what it does but, AFAIK no one as yet knows the origin (other than the BB) of how gravity came to be or what it (is), why is the origin of gravity so elusive?

Why should gravity be any different than anything else? We know no more or less about it than we do the other three forces.
 
  • #8
wolram said:
I guess most people know what it does but, AFAIK no one as yet knows the origin (other than the BB) of how gravity came to be or what it (is), why is the origin of gravity so elusive?

the most accurate theory of gravity, currently, represents it as the way matter affects geometry. I think this remains mysterious. How can matter affect geometry?

and there is the puzzle about inertia. why should stuff follow geodesics? and why should a thing's inertia ("inertial mass") be the same as the ("gravitational mass") strength with which it bends geometry? this does seem elusive, to use your word.

I've just been reading a 2001 book by Smolin called *Three Roads to Quantum Gravity* and I'm amazed at how good it is. Didn't expect such clarity and depth in a popular-written book. The last chapter has a prospective on how these very same problems might eventually (over next 10 years say) be addressed and solved. nice thing is that he doesn't just trivialize the problems---he takes a serious look into them. Great book.
 
Last edited:
  • #9
russ_watters said:
Why should gravity be any different than anything else? We know no more or less about it than we do the other three forces.
I would say we know less about gravity than the other forces. For one, we know how the other forces are related.
 
  • #10
DaveC426913 said:
I would say we know less about gravity than the other forces. For one, we know how the other forces are related.

For sure! And there's an accurate picture of them within a static geometric framework (Euclidean or Lorentzian). You don't need General Relativity to describe electromagnetism.
 
  • #11
wolram said:
I guess most people know what it does but, AFAIK no one as yet knows the origin (other than the BB) of how gravity came to be or what it (is), why is the origin of gravity so elusive?

I guess I don't even understand if there is a consensus on whether gravity is a force or not. While apparently GR does not consider it a force, what about QG or string theory? If they postulate a graviton as a carrier, do they consider gravity a force, in opposition to GR?
 
  • #12
It may be that there are certain preconceived notions that have made there way into mainstream physics which hinder our ability to look for gravity. Our "best" "most accurate models are fundimentally flawed. We need to start back at the basics and let go of some of mainstream physics assumptions. The problem is that mainstream physics is about results and not understanding, effect and not cause. We have built pyramids on effect and left cause behind in order to make critical advancements in technology to win wars and stay competative with other countries. Our egos have exceded our understanding and we are too proud to go back and re-trace our steps.
 
  • #13
I think it is fair to consider gravity as a force. Newton gave this considerable thought.
 
  • #14
Chronos said:
I think it is fair to consider gravity as a force. Newton gave this considerable thought.

The main problem with regarding gravity as "just a force", is that it cannot possibly explain gravitational time dilation.
 
  • #15
Chronos said:
I think it is fair to consider gravity as a force. Newton gave this considerable thought.

Could it be that force that 'pulls' space until it bend / curves
So that both Einstein and Newton both was right?
If so we have also achieved a deformation of space / time – right?
What I mean, - it seems like matter effect space somehow, - for instance black holes of galaxies, but also even the elementary particles 'interacts' with space
Fx.
1.) http://en.wikipedia.org/wiki/Frame_dragging
2.) http://en.wikipedia.org/wiki/Black_hole_electron
 
Last edited:
  • #16
pervect said:
The main problem with regarding gravity as "just a force", is that it cannot possibly explain gravitational time dilation.
This line of reasoning is entirely consistent with GR.
 
  • #17
Hi Bjarne,

I think it's fair to say that most, but certainly not all, physicists agree that gravity curves the geometry of space. Some say that "gravity acts on space" while others more conservatively say that "gravity acts on matter."

Since the effects of gravity perfectly mimic a curvature of space, as far as I know there's no (known) way to be sure whether space is actually being curved, or instead whether instead the "force" of gravity just adheres to a geometrically-based algorithm. It's really a fascinating but (so far) quasi-philosophical question.

There appears at this time to be no justifiable reason to doubt the predictions of GR, but it is very sane to question whether the geometry of space is actually capable of curvature. It's similar to asking whether there really can be more than three spatial dimensions. By definition it's impossible to know, but mathematical formulas are unbounded by physical reality, so we can imagine a higher-dimension spaciality in excrutiating detail. Are advanced theorists modeling reality or just building beautiful sandcastles in the air? Who knows?

I think that in GR there is no functional distinction between a "force" and "pseudo-force". Einstein appears to personally have favored the notion that gravity is a "real" force, and therefore that, for example, the coriolis effect is also a "real force". But most GR specialists after Einstein seem to believe that both are mere "pseudo-forces."

In another semantic sense, the definition of "reality" is what's undefinable here. Einstein said that reality is only a category that we choose to put some things into and not others. But we must categorize on a principled basis.

Jon
 
  • #18
Hi Joinmtkisco
Yes, - you are right, - what Einstein or Newton said and thought doesn’t take us very far.
It’s important to keep in mind that space is a ‘connecting link’. It’s no doubt that space must somehow be involved in the ‘phenomena’ - Simply because if we should agree that space is nothing, how can NOTHING arrange exchange of gravity and pull down a stone to earth.

But exactly how is space involve, - do space really curves, - or just gets ‘thinner’ - or what happens to space between? – Its a pretty good question.
We know that space expands. Can space also become contracted?
I think the biggest problem in physics in our time, is that we haven’t understood the connection and nature of space and matter and how these two are connected. This is already clearly emphasized of other related huge understanding problems we have, fx dark matter, dark energy black holes, or think of a simply daily event: the moon, on the one hand it is attracted of the earth, and the (tide) water on Earth is attracted of the moon. The Earth's and the moon are reaching out of each other, we surly can agree. – But what is the role of the space between? - In this case it doesn’t make sense to claim that the ‘contact’ between the moon and the tide is caused of “curvature” of space. How is space ‘linked’ to matter is probably a bit more complex and will certainly be a big question, - in this century? (Sorry for the bad English)
Bjarne
 
  • #19
Perspective is a key issue. To any 'fixed' observer, the metric of spacetime appears to be curved. Is that 'reality'? Hard to say. Devising a non-fixed observer is difficult.
 
  • #20
jonmtkisco said:
I think that in GR there is no functional distinction between a "force" and "pseudo-force".

Wouldn't a rocket provide a 'real' force on its payload, even in a GR environment? Isn't that different to the 'pseudo-force' of gravity?
 
  • #21
Hi Jorrie,

Good question. To an outside observer who knows that the rocket is the source of acceleration, it seems reasonable to consider this a "real" force. But to an observer who is unaware that she's in a rocket, how does she know whether it's a real or pseudo-force? I guess that the uninformed observer could tell the difference by measuring tidal effects (?) (Can you measure the tidal effect if you're inside the accelerating frame?) As I understand it, an accelerating rocket would not create tidal forces because the acceleration force is completely "uniform", i.e. not a field.

Maybe the answer is that things are "real" TO US only if we can observe and identify the underlying cause of movement. By that test, we are currently unable to judge whether gravity is a real or pseudo-force.

One can say that we are able to stand outside of the coriolis effect and more or less identify its cause. That is, we can identify its "first order cause" as the rotation of Earth's sphere. But below that there remains a "second order cause", gravity, the cause of which we currently are unable to fully comprehend. So one might reluctantly conclude that we can't yet decide whether coriolis is real or pseudo-.

I think it's going too far to say that if we can't determine whether a particular force is real or pseudo-, that we must automatically consider it to be pseudo-. In my view, the answer is that "the jury is still out."

Another example occurs to me: Is an electromagnetic field a real or pseudo-force? Compared to gravity, we are much more confident about how electromagnetism works (i.e., the force is mediated by exchanges of virtual photons). But there are so many similarities between the fields of electromagnetism and gravity that I would be reluctant to put them in different "reality categories" unless I was absolutely convinced.

Jon
 
Last edited:
  • #22
Does an electromagnetic field cause geometric curvature of space?
 
  • #24
Force or not?

Hi Jon.

jonmtkisco said:
To an outside observer who knows that the rocket is the source of acceleration, it seems reasonable to consider this a "real" force. But to an observer who is unaware that she's in a rocket, how does she know whether it's a real or pseudo-force?

No she can't, but the force is not gravity in either case. IMO, it is in both cases simply the 'floor' pushing at her body. In a gravitational field one can view the force as pushing her out of her free-fall spacetime geodesic, where her geodesic movement would have been force-free (except for tidal forces, of course).

jonmtkisco said:
I guess that the uninformed observer could tell the difference by measuring tidal effects (?) (Can you measure the tidal effect if you're inside the accelerating frame?) As I understand it, an accelerating rocket would not create tidal forces because the acceleration force is completely "uniform", i.e. not a field.

As I understand it, the acceleration will differ over the length of the rocket, because the rocket approximates Born-rigid acceleration. (http://www.mathpages.com/home/kmath422/kmath422.htm) Shouldn't there then be 'pseudo-tidal forces' over the length of the rocket in the radial direction?

Jorrie
 
Last edited:
  • #25
Hi Jorrie and Bjarne,

1. It sounds right to me that a comoving observer could measure tidal effects.

2. Bjarne, I didn't formulate my question clearly enough. I should have asked, "Does an electromagnetic field cause geometric curvature of space with respect to a charged particle moving through the field?" In that respect, I note the following from the Wikipedia article on "Maxwell's equations in curved space:"

"In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime (or more generally, spacetime with a non-Euclidean metric). They can be viewed as a generalisation of the vacuum Maxwell's equations as they are normally formulated in the local coordinates of flat spacetime, but general relativity dictates that the presence of electromagnetic fields themselves induce curvature in spacetime, so Maxwell's equations in flat spacetime should be viewed as a convenient approximation."

It sure is interesting to contemplate the idea that an electromagnetic field actually curves spacetime, but in a way that is "apparent" only to charged particles. If it's true, then it reinforces the question of how "real" the curvature of space by gravity is.

Jon
 
  • #26
The real question is: why are so many PF threads posted in the wrong forums?

Shouldn't this thread be in "Astrophysics", or even "Beyond the Standard Model"?

wolram said:
why is the origin of gravity so elusive?

You're surprised that the "origins" of gravity/inertia are elusive? I'm surprised that you are surprised!

marcus said:
and there is the puzzle about inertia. why should stuff follow geodesics? and why should a thing's inertia ("inertial mass") be the same as the ("gravitational mass") strength with which it bends geometry? this does seem elusive, to use your word.

As you probably know, there have been many speculations about what physical principles might underlie those enshrined in theories of gravitation such as gtr (for example, the equivalence principle). You might be interested in this review of one perenially popular line of speculation:
http://relativity.livingreviews.org/Articles/lrr-2004-3/index.html [Broken]

marcus said:
the most accurate theory of gravity, currently, represents it as the way matter affects geometry. I think this remains mysterious. How can matter affect geometry?

I would be astonished if you were not talking about gtr, but for the record: I assume that you were talking about gtr!

I suppose you can say that it is a mystery why the presence of matter (or other mass-energy) affects the geometry of spacetime. But is this really more mysterious than saying that the motion of charges in a wire creates something we call a magnetic field? What the heck is a magnetic field "really"? What is "electrical charge"? And why should magnetism care a jot about charge? I dunno, but I know that according to Maxwell's theory, it does, and I know that this has been a highly successful theory which predicts/explains a lot of useful stuff, like radio waves.

I dare say that most physicists asked such questions when they were young. But at some point, one learns to focus on questions which can be attacked via the scientific method. Specificially, wolram should be encouraged to try to formulate a theoretical speculation which might someday admit an experimental test.

dilletante said:
I guess I don't even understand if there is a consensus on whether gravity is a force or not. While apparently GR does not consider it a force, what about QG or string theory? If they postulate a graviton as a carrier, do they consider gravity a force, in opposition to GR?

It's difficult to explain how physicists use these terms without getting more deeply into the relevant theories than we can do at PF. I'll just offer a few vague pointers regarding gtr:

The best short answer to the question "how does gtr treat gravitational interactions?" is that gtr treats "the gravitational field" as (part of) the curvature of spacetime itself, i.e. as a geometrical effect which affects how objects move, how clocks behave, and so on. In addition, energy and momentum act as the "source" of the gravitational field, i.e. when they are present in some region of spacetime, that region is curved in a certain way. This circle of ideas is very well summarized in the famous slogan of John Archibald Wheeler: "[the geometry of] spacetime determines how matter moves, and matter tells spacetime how to curve [which changes its geometry]".

However, in some contexts it is convenient to elaborate on this slogan. In gtr, a special case of Wheeler's slogan shows that the world line of a small freely-falling object in a vacuum region is a timelike geodesic in the Lorentzian manifold which we use to define the geometry of the "setting" for physics, spacetime. But in Newtonian gravitation--- or rather, the non-relativistic "Newtonian" field theory in which the Poisson equation plays a role analogous to the EFE in gtr-- offers a very different description of gravitation in this situation. Namely, the gravitational acceleration of a small object in a vacuum region of space is given by the gradient of the gravitational potential, which is determined by solving the Laplace equation, the analogue in this theory of the vacuum EFE. Now Newtonian gravitation works very well in many situations, so one of the the first tasks facing the physicist who constructed gtr [*] was to verify that in an appropriate limit it gives the same predictions as Newtonian gravitation. To do this, one studies a slow motion weak-field limit and re-expresses the gtr law in an operational but less geometric way (one looks at the connection), and one verifies that in this limit, gtr does indeed give the same predictions as Newtonian gravitation. My point is that you shouldn't be surprised that this "correspondence" between slow motion weak-field gtr and Newtonian gravitation is somewhat roundabout, given that these two theories are based on such different conceptual principles!

[*Yes, of course I mean Albert Einstein!]

Bjarne said:
Could it be that force that 'pulls' space until it bend / curves
So that both Einstein and Newton both was right?

Your question is pretty vague, so it is hard to be sure, but you might be groping toward the details of the program I outlined just above, where we compare Newtonian gravitation with slow motion weak-field gtr.

It might also be useful to state that in gtr, there is a very simple and beautiful geometric concept which corresponds quite precisely to acceleration (the kind measured by accelerometers): small objects (or more generally, bits of matter inside big objects) have world lines which are timelike curves. Such curves have path curvatures defined at each event on the curve. The path curvature at any event on the curve is a spacelike vector which is in fact orthogonal to the tangent vector. Its length gives the magnitude of acceleration experienced by the object at this event, and it's direction gives the direction of acceleration. (More precisely, one should smoothly assign a frame field along the curve, and then any vector orthogonal to the tangent vector, which is the timelike unit vector in the frame, is a linear combination of the three spacelike unit vectors in the frame. Thus, it makes sense to regard the path curvature as a three dimensional vector which lives in the "spatial hyperplane element" orthogonal to the curve at a given event.)

In contrast, in gtr the gravitational field is treated as (part of) the curvature of spacetime itself. Spacetime curvature is tensorial and the components of the Riemann (or Weyl, or Ricci, or Einstein, or tidal) curvature tensors have the units of reciprocal area. Path curvature is vectorial and its components have the units of reciprocal length. So once you know the math, there is little chance of confusing them!

jonmtkisco said:
I think it's fair to say that most, but certainly not all, physicists agree that gravity curves the geometry of space. Some say that "gravity acts on space" while others more conservatively say that "gravity acts on matter."

Assuming you are talking about our gold standard theory of gravitation, gtr, there is no controversy! I suspect you have been misled by a discussion you read or heard which actually concerned something like the (quite unambiguous!) geometrical distinction between spacetime curvature and path curvature and the very different physical interpretations assigned to these quantities in gtr.

jonmtkisco said:
Since the effects of gravity perfectly mimic a curvature of space, as far as I know there's no (known) way to be sure whether space is actually being curved, or instead whether instead the "force" of gravity just adheres to a geometrically-based algorithm.

This remark seems to be a somewhat murky reference to the fundamental distinction between local and global structure in the theory of manifolds, which enforces such a distinction in metric theories of gravitation, such as gtr. That is, in any sufficiently small local neighborhood one can choose to regard curvature as a mathematical fiction, albeit one which is undeniably conceptually convenient in order to take maximum advantage of the simple geometric structure on the tangent spaces of our Lorentzian manifold models of spacetime. However, at the level of global structure such an "effective field theory" is quite unambiguously a distinct theory from gtr. That is, one can describe scenarios in which an observer would report physical experiences which might contradict gtr but not its local mimic, or contradict the local mimic but not gtr, or which contradicts both theories.

Curious readers may wish to depart the thread at this point and study Box 7.1 and 17.2 in MTW, then related discussion in the textbook by Weinberg.

jonmtkisco said:
but it is very sane to question whether the geometry of space is actually capable of curvature.

Good physics tends to employ mathematical reasoning rather than philosophical disputation, so I prefer to stick to the realm of mathematical reasoning. In this realm, depending upon your mathematical definition of "geometry", this may be more or less sane. You might be interested for example in teleparallel gravity. In some styles of developing a teleparallel theory, instead of modeling the gravitational field as the curvature of a torsion-free connection, one models it as the torsion of a curvature-free connection.

jonmtkisco said:
I think that in GR there is no functional distinction between a "force" and "pseudo-force".

No, path curvature as discussed above is quite clearly distinct mathematically and conceptually from something like the Coriolis force. Tidal accelerations are quite distinct from these, as are spin-spin accelerations.

Tidal accelerations are modeled in gtr by the electrogravitic tensor, or tidal tensor, which is one piece of the Bel decomposition of the Riemann tensor, and spin-spin accelerations are modeled by the magnetogravitic tensor. The Bel decomposition splits the Riemann tensor into three-dimensional tensor fields, wrt some timelike congruence. It is fully analgous to the decomposition of the "EM field tensor" into electric and magnetic fields (vector fields), with respect to some timelike congruence.

jonmtkisco said:
Einstein appears to personally have favored the notion that gravity is a "real" force, and therefore that, for example, the coriolis effect is also a "real force". But most GR specialists after Einstein seem to believe that both are mere "pseudo-forces."

This thread is already far too cluttered to discuss historical viewpoints, but I assure you that "gravitational force" is usually taken to mean the same thing in gtr as it means in Newtonian physics. In both theories, a free falling observer feels no force. But an object sitting on the floor of a room on the surface of the Earth feels a radially outward force. This force is physically due to EM interaction betwen the object and the floor of the room, but it is usually called the gravitational force. This makes perfect sense in the context of discussing the hydrostatic equilibrium of a ball of perfect fluid held up against its gravitational self-attraction by the pressure of the fluid!

Bjarne said:
We know that space expands. Can space also become contracted?

You are venturing into dangerous territory here! If you are very careful to define mathematically what you mean by "space expands" or "contraction of space", you can make sense of this, but if you try to do this, I think you will find that that you are really talking about the expansion or contraction of a congruence; that is, a family of non-interesecting curves which fill up a region of spacetime. (More precisely, they are the integral curves of some vector field; timelike and null congruences are particularly important in gtr.)

Bjarne said:
I think the biggest problem in physics in our time, is that we haven’t understood the connection and nature of space and matter and how these two are connected. This is already clearly emphasized of other related huge understanding problems we have, fx dark matter, dark energy black holes, or think of a simply daily event: the moon, on the one hand it is attracted of the earth, and the (tide) water on Earth is attracted of the moon. The Earth's and the moon are reaching out of each other, we surly can agree. – But what is the role of the space between? - In this case it doesn’t make sense to claim that the ‘contact’ between the moon and the tide is caused of “curvature” of space. How is space ‘linked’ to matter is probably a bit more complex and will certainly be a big question, - in this century? (Sorry for the bad English)

This mostly strikes me as too philosophical for this forum, but it might be worthwhile to remark that in another useful decomposition of the Riemann tensor, the Ricci decomposition into the completely tracefree piece (the Weyl or conformal curvature tensor) plus a piece built from the tracefree Ricci curvature tensor, plus a piece built from the Ricci curvature scalar, the last two pieces contain exactly the same information as the Einstein tensor. Then we can say: Ricci curvature, or equivalently Einstein curvature, represents that part of the spacetime curvature which is due to the immediate presence at a given event of some energy and momentum, via the EFE. Weyl curvature represents that part of the spacetime curvature which can propagate across a vacuum region as gravitational radiation. The two types are connected via a differential equation which arises from the contracted Bianchi identities. This equation says that Ricci curvature HERE can create Weyl curvature nearby, which can then create more Weyl curvature a little further away, and so on.

In this way, when one forms a star by gradually concentrating matter in a compact region, the surrounding vacuum region is slowly curved up. In the end we have a region filled with matter, in which the geometry is dominated by Ricci curvature (in fact, in the simplest model of an isolated object, Schwarzschild's stellar model, the only curvature inside the star is Ricci curvature), surrounded by a vacuum region, in which the geometry is controlled by Weyl curvature. In the case of an isolated object, the curvature in the vacuum region falls off like [itex]O(m/r^3)[/itex], the same way that tidal accelerations of test particles scale in Newtonian gravitation. To forestall possible confusion, I should emphasize that Weyl curvature includes both such "Coulomb curvature" and the curvature typical of gravitational radiation, which typically oscillates in time but which decays with distance much more slowly, like [itex]O(1/r)[/itex]. (The respective buzzwords in the trade are "Petrov type D" and "Petrov type N" Weyl curvature; there is also Petrov type III Weyl curvature which decays like [itex]O(1/r^2)[/itex].)

Jorrie said:
Wouldn't a rocket provide a 'real' force on its payload, even in a GR environment? Isn't that different to the 'pseudo-force' of gravity?

Yes, exactly--- that is what I was talking about above. In a rocket, idealized as a pointlike object, the acceleration corresponds to the path curvature of the world line of the rocket. This is quite distinct mathematically, geometrically, and physically from something like Coriolis "force". Just try analyzing a block sliding on a turntable!

Jorrie said:
But to an observer who is unaware that she's in a rocket, how does she know whether it's a real or pseudo-force? I guess that the uninformed observer could tell the difference by measuring tidal effects (?)

No, he can tell, without looking out the window of his spaceship, that he is accelerating by employing an accelerometer. OTH, if he is in free-fall, he feels no forces to O(dx). At order O(dx^2) he can measure small tensions and compressions of his spaceship, from which he can conclude (according to Newtonian gravitation, or gtr, or any reasonable theory of gravitation) that he is falling freely near some massive object and that the axis of maximal tension points approximately in the direction of this object--- but he can't tell "down" from "up" by measuring the tidal forces, at least not at O(dx^2). Over time he may find that the maximal tension is increasing, in which case he is probably getting closer. Or he may eventually conclude (still without looking out the window) that he is in orbit around the object. In this case, with even more sensitive equipment, he can in principle test gtr vs. Newtonian gravitation by looking for evidence of precession of the spin axis of gyroscopes which he carries inside his spaceship. See Cuifolini and Wheeler, Gravitation and Inertia for further discussion of such experiments.

Jorrie said:
Is an electromagnetic field a real or pseudo-force?

There is generally a pretty clear distinction in classical physics between field and a force. I have already mentioned a pair of mathematically analogous observer dependent decompositions of fields (of the EM field tensor into electric and magnetic vector fields, and of the Riemann curvature tensor into tidal tensor and some others).

jonmtkisco said:
Does an electromagnetic field cause geometric curvature of space?

In Maxwell's theory of gravitation, an EM field is associated with energy and momentum which is represented in the "electromagnetic stress tensor". In gtr, this contributes directly to the right hand side of the Einstein field equation, so it is the direct cause of some Ricci curvature, which turns out to cause some Weyl curvature.

Incidently, it is possible to write down exact solutions of the EFE which represent an EM plane wave accompanied by a comoving gravitational plane wave. This is a very direct way of appreciating what we mean by saying the EM radiation and gravitational radiation propagate at the same speed!

Jorrie said:
IMO, it is in both cases simply the 'floor' pushing at her body. In a gravitational field one can view the force as pushing her out of her free-fall spacetime geodesic, where her geodesic movement would have been force-free (except for tidal forces, of course).

Exactly.

Jorrie said:
As I understand it, the acceleration will differ over the length of the rocket, because the rocket approximates Born-rigid acceleration.

Much needless ink has been spilled on this subject, and alas this topic has proven to be a crank-magnet at PF (and Wikipedia) in the recent past, so I wish to avoid it. Suffice it to say that the Rindler congruence consists of hyperbolas which are nested in a manner analogous to to nested circles. The trailing edge of the rocket has a smaller radius of curvature, so a larger path curvature, so surprisingly enough the trailing edge has to accelerate harder than the leading edge in order to maintain the "rigidity" of the rocket. More precisely, by "rigid" we mean that the expansion tensor of the timelike congruence consisting of the world lines of bits of matter in the rocket must vanish. There is another congruence, the Bell congruence, in which the magnitude of acceleration in constant along the length of the rocket, but this forces the expansion tensor to be nonzero. In fact, the rocket would slowly elongate until it breaks apart! (A real rocket would of course elongate or compress slightly depending on the details of where and how forces are applied along the length of the rocket, until it reaches some equilibrium--- or until some vibration sets in, but it would either behave on average over time like a Rindler congruence, or else it would break up.
 
Last edited by a moderator:
  • #27
Speaking of breaking up, my post grew too long...

jonmtkisco said:
the Wikipedia article on "Maxwell's equations in curved space:"

Caution: Wikipedia articles are unfortunately neither stable nor reliable, since, you know, anyone can edit them :rolleyes: There is a new Wikiproject Relativity founded by M. Patel http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Relativity, which derives from previous work (2005-2006) by MP, myself http://en.wikipedia.org/wiki/User:Hillman/Archive, and EMS, and you can probably trust anything any of us three write about mainstream physics. But I caution that there are numerous cranks active in the physics/math pages at Wikipedia, far too many for MP and EMS or even a dozen project members to revert/argue-with/bring-before-ArbCom, particularly if they are trying to create new content. In late 2006, I reluctantly concluded that it is impractical to try to follow the Wikipedia model of deciding disagreements by consensus, since it is impossible to argue with a crank, so I Ieft the Wikipedia community. I wish them well, but I am not optimistic about the future of Wikipedia (or Web 2.0). 'Nuff said.

jonmtkisco said:
It sure is interesting to contemplate the idea that an electromagnetic field actually curves spacetime, but in a way that is "apparent" only to charged particles. If it's true,

You misunderstood. In principal, an EM field affects the curvature of spacetime in ways which will in general affect the motion even of neutral particles. (As I already said, these effects are too small to hope to measure with forseeable technology.)
 
Last edited:
  • #28
Chris Hillman

The question of this tread is: Why is the origin of gravity so elusive?
No doubt that the origin of gravity is elusive, - we even don’t know if gravity is caused by a force or not.

Imaging a football flying through the air side by side with a canon ball, (with same speed) Some kind of a FORCE pulls the canon ball faster down to the Earth like it pull down a football. If gravity only was a property of space, the canon ball would fly the same distance like the football, - right?

So is gravity caused by a FORCE? - Or caused by curvature of space? – Or both?

Was Einstein right or do we (still) have more or some faith to Newton, - or was both right? Are these confusions not elusive?

It is inevitable; - we are force to ask the question: Is gravity in reality a force that not only pulls down the canon ball, but that also pulls space until it curves. – And yes immediate we are forced into philosophy behinds gravity, and still ‘on the thinner ice’ we do not find a coherent answer, - to why is the origin of gravity so elusive.

I am not highly educated, - but it would surprise me a lot if space not should curves proportional with the acceleration of gravity.

I weak remember a quotation of Einstein, - he was wondering what space really was. But I can’t find that piece of text again, maybe someone have seen it and remember it.

Bjarne Lorenzen
 
Last edited:
  • #29
Bjarne said:
Chris Hillman

Imaging a football flying through the air side by side with a canon ball, (with same speed) Some kind of a FORCE pulls the canon ball faster down to the Earth like it pull down a football.

Bjarne, if you remember your Newtonian physics, if a football and a football-shaped cannonball are simultaneously dropped from the same height, they will strike the ground at the same time, regardless of the difference in their respective masses.

However, before they can fall, they each must be projected upwards, against gravity, by the application of force. More force is required to raise the heavier object to the highest point in its arc than to raise the lighter object to the same height. More force is also required to impart any given horizontal speed to the heavier object.

The difference in the two objects' total flight time depends on how high the highest point in their respective flight arcs are, not on their respective masses.

Air friction and wind introduce additional forces that can cause variations in the outcome, of course.

Jon
 
  • #30
There is no harm in conceding you might be in over your head, Jon. Chris is a world class phycisist who donates his time here to explain the difference between science and superstition.
 
  • #31
Joinmtkisco

Right. - Bodies accelerate and fall towards a gravity field (vacuum) with the same speed..
This happens even though the pull of gravity affects the canon ball with much greater attraction than it effect the football.
The cause of this factum is it self really a mystery, - we have no idea of why this is so.
Intuitive we would expect that the canon ball would fall faster, - but it’s not what happens.

Imaging a football and a canon ball falling down to Earth from let say only 1 meters height.
Its not “space enough” for believing that the cause of these bodies both fall with the same speed, (on that short distance) is due to curvature of space.
Both bodies follow a straight line and are not affected of the curvature of space. – So how can the curvature of space in this particular example be the cause of gravity? - It’s simple make no sense.

What we do know is that it requires more force to lift a canon ball to 1 meter height as it require to lift a football to same height.
The canon ball will in this position have greater potential energy. If we accelerate the football and the canon ball up to both 100 MPH (1 meter above the surface of earth) the canon ball still will have greater potential energy.

Let’s say that that the size of the canon ball and the football is the same, wind resistance is therefore also the same.
If we should be able to explain gravity based on curvature of space, - the football as well as the canon ball (moving with 100 MPH) would hit the earth’s surface simultaneously, - but this is not what happens.
The explanation is of course, - the canon balls have greater potential energy proportion to the earth. – It is this FORCE involved that pull down the canon ball first.

So based on simple everyday’s observation gravity seems to be a FORCE. – On the other hand we can not close our eyes for the fact that the curvature of space ALSO seems parts of the gravity phenomena.
But attempt to implement this aspect in a complete and coherent way is: 'the end of the known road'; - from here we are forced into philosophically considerations.

So far we have not been able to archive any kind of coherent understanding to why we can say we have two independent (and both pretty good) theories for the same gravity phenomena. Common for these 2 theories is that we do not understand on the one hand why space curves, and on the other hand from where does the 'well known' FORCE come from, and how does it occour.

Well, - it seems to be a broad hint build in, - matter must be responsible / the origin for this force, - Could this force also be responsible for space to curve? – Or why do space curve? - What does 'curvature of space' really mean? - I mean think about a game-roulet, - it is something physical we know - but this is not the way space is? - What is space? - What's its nature?

Bjarne
 
Last edited:
  • #32
Although the search for gravity began before 500 years but we don't yet have a complete picture about how gravity works. So we come across this sort of many times. What you have to note is "what we see and feel in everyday life in not nature"So spacetime curvature can't be felt in everyday life.To feel it you have to go extreme.

<< post edited by PF Mentor berkeman >>
 
Last edited by a moderator:
  • #33
We do not need to involve time, even though its ‘deformation’ together with space is a consequence. It will only contribute to unnecessary confusion. We can feel and measure gravity. The force is a reality.
 
  • #34
Please read and mull what I wrote

Bjarne said:
Chris Hillman... it would surprise me a lot if space not should curves proportional with the acceleration of gravity...Imaging a football flying through the air side by side with a canon ball, (with same speed) Some kind of a FORCE pulls the canon ball faster down to the Earth like it pull down a football... Was Einstein right or do we (still) have more or some faith to Newton, - or was both right?

You addressed me, but your comments suggest that you did not bother to read my long and thoughtful post #26-27! This is dismaying, as are comments by several posters in this thread which appear to me to verge on personal attacks :frown:

(Before anyone cites Jn8:7, I am aware that in the past I have myself sometimes expressed frustration stemming from the apparent obtuseness of some PF poster.)

Bjarne said:
I am not highly educated

PF is a public forum which welcomes participants with a very broad range of interests and backgrounds. I have no expection that everyone here should have a formal background in mathematics and physics, although quite frankly I often wish that were the case. But while I am all too well aware that many laypersons who participate in PF have little appreciation of what mathematical physics is all about, or even what the scientific method is all about, I do think I have the right to demand that you at least try to read my posts before "replying" to them. Please note that I was trying to raise the level of discourse by taking the time to try to clear up multiple misconceptions and to convey some sense of why the beliefs, achievements, shortcomings, and controversies of contemporary (mainstream) physics/cosmology are quite different from and far more subtle and interesting than most laypersons and self-described "critics" appreciate.
 
Last edited:
  • #35
Go ahead, flatter me!

Hi, Chronos,

Chronos said:
Chris is a world class phycisist who donates his time here to explain the difference between science and superstition.

Thanks for the kudo, but for the record: my formal background is in mathematics, and I certainly cannot be called a "physicist". Indeed, my knowledge of relativistic physics is entirely from my study of a dozen excellent textbooks plus the research literature and from my own gtr computations (e.g. I have solved the EFE thousands of times), not formal coursework. On the bright side, I presume that the satisfactory extent of my knowledge :wink: is evident from my expository posts in forums such as PF. I don't know what "world class" means, but suspect this is an inappropriate appellation in my case :uhh:
 
Last edited:
<h2>1. What is gravity?</h2><p>Gravity is a natural phenomenon by which all objects with mass are brought toward one another. It is one of the four fundamental forces of nature and is responsible for the attraction between objects.</p><h2>2. How does gravity work?</h2><p>Gravity is the result of the curvature of space and time caused by the presence of mass or energy. The more massive an object is, the stronger its gravitational pull will be. This pull decreases as the distance between objects increases.</p><h2>3. What is the elusive origin of gravity?</h2><p>The origin of gravity is still a mystery and is a subject of ongoing research and debate among scientists. Some theories suggest that gravity is a fundamental force that has always existed, while others propose that it is a byproduct of other fundamental forces.</p><h2>4. How was gravity discovered?</h2><p>The concept of gravity has been known since ancient times, but it was not until the 17th century that Sir Isaac Newton developed the theory of gravity and its laws of motion. Later, Albert Einstein's theory of general relativity provided a more accurate understanding of gravity.</p><h2>5. Can gravity be explained by quantum mechanics?</h2><p>Currently, there is no widely accepted theory that explains gravity within the framework of quantum mechanics. Many scientists are working to reconcile the two theories, but it remains a challenge and an area of ongoing research.</p>

1. What is gravity?

Gravity is a natural phenomenon by which all objects with mass are brought toward one another. It is one of the four fundamental forces of nature and is responsible for the attraction between objects.

2. How does gravity work?

Gravity is the result of the curvature of space and time caused by the presence of mass or energy. The more massive an object is, the stronger its gravitational pull will be. This pull decreases as the distance between objects increases.

3. What is the elusive origin of gravity?

The origin of gravity is still a mystery and is a subject of ongoing research and debate among scientists. Some theories suggest that gravity is a fundamental force that has always existed, while others propose that it is a byproduct of other fundamental forces.

4. How was gravity discovered?

The concept of gravity has been known since ancient times, but it was not until the 17th century that Sir Isaac Newton developed the theory of gravity and its laws of motion. Later, Albert Einstein's theory of general relativity provided a more accurate understanding of gravity.

5. Can gravity be explained by quantum mechanics?

Currently, there is no widely accepted theory that explains gravity within the framework of quantum mechanics. Many scientists are working to reconcile the two theories, but it remains a challenge and an area of ongoing research.

Similar threads

Replies
7
Views
1K
Replies
2
Views
445
  • High Energy, Nuclear, Particle Physics
Replies
6
Views
2K
Replies
2
Views
1K
Replies
12
Views
2K
Replies
7
Views
730
Replies
23
Views
1K
Replies
8
Views
1K
Replies
2
Views
714
Back
Top