Frequency response of a transfer function

In summary, if you have a transfer function and you need the frequency response, you will just need to plus in jω for all s.
  • #1
swraman
167
0
If I have a transfer function, and I need the frequency response of it, how do I go about doing it?

Is there a easier way than inverse Laplace transforming it, then Fourier transforming that?

Thanks
 
Engineering news on Phys.org
  • #2
In what variable is your transfer function specified? z? s?

- Warren
 
  • #3
it is in terms of s.
 
  • #4
swraman said:
it is in terms of s.

And what does s expand out to? An expression involving ...

If you have the transfer function in terms of s, you will just plot the real an imaginary parts of it versus frequency... (or the magnitude and phase as a function of frequency, like you get on an impedance analyzer).
 
  • #6
MATLABdude said:
Might want to take a look at this thread, on transfer functions:
https://www.physicsforums.com/showthread.php?t=312140

EDIT: Wait, that's your thread! Never mind then...

LOL. I know, most of the time I go to google to search for related info for a PF question, the dang OP is at the top of the search list! Google is no dummy -- their spiders are all over us.
 
  • #7
berkeman said:
LOL. I know, most of the time I go to google to search for related info for a PF question, the dang OP is at the top of the search list! Google is no dummy -- their spiders are all over us.

They are, except that this is the OP's thread from yesterday (or day before last, or... dammit, 24+ hours ago). I recalled writing something about transfer functions and Laplace to Fourier transforms. I then realized that this was the same poster! Must not've done a terribly good job...
 
  • #8
MATLABdude said:
They are, except that this is the OP's thread from yesterday (or day before last, or... dammit, 24+ hours ago). I recalled writing something about transfer functions and Laplace to Fourier transforms. I then realized that this was the same poster! Must not've done a terribly good job...

Ah, got it. No, that other thread looks to contain great help. It's different enough that I won't merge the two threads yet. May even highlight that other thread...
 
  • #9
MATLABdude said:
They are, except that this is the OP's thread from yesterday (or day before last, or... dammit, 24+ hours ago). I recalled writing something about transfer functions and Laplace to Fourier transforms. I then realized that this was the same poster! Must not've done a terribly good job...

MATLABdude you did a good job clearing up what a transfer function is, etc. in that thread. I don't know why, but in my introductory signals class we didnt cover Leplace transforms or Transfer functions, we only did Fourier transforms for frequency analysis. So I was/am fuzzy about Leplace transforms (im still to take controls classes and advanced signal analysis). Unfortunatley I am now takinga class that requires that, and I want to try to at least partially understand it so the class I am in now won't be useless.
Thanks :)

Anyway, [tex]s = i \omega[/tex].
I was suposed to plot the frequency response of the transfer function, which was easily done in MATLAB, but I want to know the theory behind it.

Thanks again
 
Last edited:
  • #10
In order to get the Frequency response from the transfer function, you just need to plus in jω for all s. Assuming it exists, this will be your frequency response, aka the Fourier transform of your original signal in the time domain.I know this is an old forum... but I figure this may help anyone looking at this in the future.
 

1. What is a frequency response?

A frequency response is a measure of how a system responds to different frequencies of input signals. It describes the relationship between the input signal and the output signal of a system at different frequencies.

2. Why is frequency response important?

Frequency response is important because it allows us to understand how a system will behave when it is subjected to different input signals of varying frequencies. It is especially useful in designing and analyzing electronic circuits and systems.

3. What is a transfer function?

A transfer function is a mathematical representation of the relationship between the input and output of a system. It is a ratio of the output signal to the input signal in the frequency domain.

4. How is frequency response related to transfer function?

The frequency response of a transfer function is the plot of the magnitude and phase of the transfer function as a function of frequency. It provides a visual representation of how the system responds to different input frequencies.

5. How is frequency response measured?

Frequency response can be measured by applying a sinusoidal input signal to a system and measuring the resulting output signal at different frequencies. The magnitude and phase of the output signal can then be plotted to create the frequency response curve.

Similar threads

Replies
5
Views
1K
Replies
10
Views
454
Replies
4
Views
670
Replies
3
Views
1K
Replies
2
Views
1K
Replies
18
Views
2K
  • Electrical Engineering
Replies
2
Views
2K
Replies
1
Views
3K
  • Electrical Engineering
Replies
4
Views
310
  • Electrical Engineering
Replies
1
Views
450
Back
Top