Drawing graph of function (using basic functions)

In summary, to draw the graph of f(x)=\frac{1}{x^2-1}-1, you can start with the basic graph of y=\frac{1}{x}, then extend it to y=\frac{1}{x^2} by reflecting the negative values of x about the x-axis. Next, extend it again to y=\frac{1}{x^2-1} by factoring the denominator and shifting the previous hyperbola's asymptote to x=1 for positive values of x and x=-1 for negative values. Finally, shift the graph down by 1 to get the graph of f(x).
  • #1
Дьявол
365
0
Draw a graphic of the function using the basic elementary functions.
For example.
Draw [tex]f(x)=\frac{1}{x-1}-1[/tex]. I know that I will first draw the function 1/x (basic function) then shift the graph of the function 1/x for 1 on right of the x-axis, so I got the graph of the function 1/(x-1). Then shift the whole function for 1 up of the y-axis and I got the graph of f(x).

How will I do the same with [tex]f(x)=\frac{1}{x^2-1}-1[/tex].

I tried first with 1/x2 then I realized that I can't shift it for 1 on the x-axis? What's the problem? How will I draw the graph?

Thanks in advance.
 
Mathematics news on Phys.org
  • #2
Draw f(x) = x^2, then shift it down by 1, then draw f(x) = 1/(x^2 -1)
 
  • #3
Дьявол said:
How will I do the same with [tex]f(x)=\frac{1}{x^2-1}-1[/tex].

I tried first with 1/x2 then I realized that I can't shift it for 1 on the x-axis? What's the problem? How will I draw the graph?
Why can't you shift it? Note that originally the vertical asymptote is at x=0 for 1/x^2. After you shift it, it'll be at [tex]x = \pm 1[/tex]. Also draw the graph for the interval -1<x<1
 
  • #4
I think in order for you to be able to shift it the same way as 1/(x-1), it would need to be 1/(x-1)^2

Then you could draw the graph of 1/x^2 and shift it by 1
 
  • #5
@emilkh I can't do that, since 1/(x2-1) is not parabola

@Defennder here is the picture.
2uoh1sw.png
, you will obviously see that 1/x2 is not shifted by the x-axis for 1. It should be 1/(x-1)2 so that I can shift it.

@DyslexicHobo, I think also like you. To be possible, it must be 1/(x-1)2
 
  • #6
Is the actual question how does one compare [itex]f(x)\frac{1}{x^2-1}-1[/itex] in terms of the sketch of [itex]f(x)=\frac{1}{x-1}-1[/itex] or how do you just graph the function in general? What you need to look out for etc.
 
  • #7
I need to draw the graphic with shifting. Seems like, the basic graphic would be [tex]\frac{1}{x^2-1}[/tex], and then I will shift the graphic for 1 of the y-axis so that I got [tex]\frac{1}{x^2-1}-1[/tex]
 
  • #8
Well the green one looks correct. Now just shift it down by -1 and you're done.
 
  • #9
Yes. So my basic graph would be [tex]\frac{1}{x^2-1}[/tex] right?
 
  • #10
I'm not sure what you mean by "basic graph", but if you're referring to the graph you start off with before you do the shifting, then I'd say it depends. You can start off from there, or if you're less confident, you can start off with 1/x, then 1/x^2, then 1/(x^2-1) then finally 1/(x^2-1) - 1. Over time when you get more confident and have sufficient practice you can start off with 1/(x^2-1) straight away.
 
  • #11
Mentallic said:
Is the actual question how does one compare [itex]f(x)\frac{1}{x^2-1}-1[/itex] in terms of the sketch of [itex]f(x)=\frac{1}{x-1}-1[/itex] or how do you just graph the function in general? What you need to look out for etc.
The only difference between the first and the second expression is that x has been replaced by x^2. If you think about it, this just means that the graph is symmetrical about the y-axis. Any negative x-value would give a y-value equal to its positive counterpart because of the square term.

To graph such equations you always start off with something known. As above, per what I wrote to Abron, you start off with a few selected graph types for eg. y = x^n where n is odd or when n is even, y = ln(x), y = e^x, y = trigo(x) , where trigo is either sin, cos, tan etc. Then you need to know what replacing x by x-c would do to the graph, what replacing x with x^2 or |x| would do as well.
 
  • #12
Thanks for the replies. I am supposed to solve this problems using the graphics of basic elementary functions. With other words, I should solve it by shifting.

Regards.
 
  • #13
Well ok, if you were to go about graphing this from its 'elementary' graph [tex]y=\frac{1}{x}[/tex] then I guess I would go about it something like this:
Extend the hyperbola to [tex]y=\frac{1}{x^2}[/tex] by reflecting the negative values of x about the x-axis and if necessary, change the shape of the hyperbola to account for the x squared term.
Extend this again to [tex]y=\frac{1}{x^2-1}[/tex] and notice that the denominator can be factorised to [tex](x-1)(x+1)[/tex] so the domain of the function does not exist at 1 and -1. This means you need to shift the previous hyperbola that is asymptotic at x=0 to x=1 for the positive values of x and x=-1 for the negative values. Remember the domain between -1 and 1 though. If you're really unsure what to do in here, I recommend substituting x values slightly less than 1 and more than -1 to find where the range tends to. Also sub x=0 to find where the it cuts the y-axis.
Extend this to [tex]y=\frac{1}{x^2-1}-1[/tex] by just shifting everything down 1. i.e. there is an asymptote at y=-1 instead of previously y=0.
 
  • #14
Mentallic thanks for the reply. Ok, now I understand the point.
 

1. What is a graph of a function?

A graph of a function is a visual representation of the relationship between the input values (x-axis) and the output values (y-axis) of a function. It shows how the output changes in response to different input values.

2. What are basic functions used to create a graph?

The most commonly used basic functions to create a graph are linear, quadratic, cubic, square root, absolute value, and exponential functions. These functions have simple and predictable shapes, making them easy to plot and understand.

3. How do I draw a graph of a function?

To draw a graph of a function, you need to first identify the basic function being used (e.g. linear, quadratic), then choose a range of input values and calculate the corresponding output values. Plot these points on the graph and connect them with a smooth curve. Make sure to label the axes and include any necessary units.

4. What information can be gathered from a graph of a function?

A graph of a function can provide information such as the domain and range of the function, the slope and intercepts of the function, and the behavior of the function at different input values. It can also help in identifying key features of the function, such as its maximum and minimum values, and whether it is increasing or decreasing.

5. Why are graphs of functions important?

Graphs of functions are important because they allow us to visualize and understand complex mathematical concepts and relationships. They can help in solving equations, making predictions, and analyzing real-world data. Additionally, they are useful in communicating and presenting information in a clear and concise manner.

Similar threads

Replies
12
Views
1K
Replies
4
Views
757
Replies
4
Views
409
Replies
5
Views
1K
Replies
7
Views
1K
Replies
17
Views
2K
Replies
4
Views
899
Replies
5
Views
845
Replies
11
Views
981
Back
Top