prime numbers from infinite prime number proof


by jfizzix
Tags: infinite, number, numbers, prime, proof
jfizzix
jfizzix is offline
#1
Aug22-13, 10:52 AM
P: 219
I imagine most everyone here's familiar with the proof that there's an infinite number of primes:

If there were a largest prime
you could take the product of all prime factors
add (or take away) 1 and get another large prime (a contradiction)

So what if you search for larger primes this way?

(2,3,5,7,11,13)

(2*3) +-1 = 6 +-1 = {5,7}
(2*3*5) +-1 = 30+-1 = {29.31}
(2*3*5*7)+-1 = 210+-1 = {209,211} (209 is not prime)
(2*3*5*7*11)+-1 = 2310+-1 = {2309,2311}
(2*3*5*7*11*13)+-1 = 30030+-1={30029,30031} (30031 is not prime)

I have two questions:
Do prime numbers of this sort have a special name? (like Marsenne primes are (powers of 2) +-1?)
Are there infinitely many of them?

This was just an odd thought I had. You can keep going and find products where neither one above or one below is a prime.
Phys.Org News Partner Mathematics news on Phys.org
Hyperbolic homogeneous polynomials, oh my!
Researchers help Boston Marathon organizers plan for 2014 race
'Math detective' analyzes odds for suspicious lottery wins
economicsnerd
economicsnerd is offline
#2
Aug22-13, 11:15 AM
P: 210
I don't know a name of primes of the form [itex]\pm1+\prod_{p\in P} p [/itex] for [itex]P[/itex] a finite set of primes.

One comment, though. I'm not sure whether primality/non-primality of numbers of the above form is that interesting ("interesting" being too subjective for my comment to make any sense :P). The argument to which you're referring generates primes like that based on a hypothesis we know to be false: namely, that [itex]P[/itex] can be chosen to be the finite set of all primes.
eigenperson
eigenperson is offline
#3
Aug22-13, 11:21 AM
P: 131
The products of the first n primes are called the primorials.

If you add 1 to these, you get the Euclid numbers.

If you subtract 1 instead, you get the Kummer numbers.

The prime Euclid numbers (or prime Kummer numbers) don't have special names. They are just the "prime Euclid numbers." I guess you could call them "Euclid primes" (or "Kummer primes") if you wanted to be fancy, but this is not widely-used terminology. You can find a list of the first few prime Euclid numbers on OEIS. I believe the question of whether this list goes on forever is unsolved.

As far as I know, the combined list of prime Euclid numbers and prime Kummer numbers has no name (and isn't even on OEIS as far as I can tell).

jfizzix
jfizzix is offline
#4
Aug22-13, 12:11 PM
P: 219

prime numbers from infinite prime number proof


Thanks for the inf


Register to reply

Related Discussions
a prime number which equals prime numbers General Math 10
Infineti number of prime numbers proof General Math 13
A formula of prime numbers for interval (q; (q+1)^2), where q is prime number. Linear & Abstract Algebra 0
Prime Numbers in the Diophantine equation q=(n^2+1)/p and p is Prime Linear & Abstract Algebra 5
[SOLVED] Are prime numbers infinite? General Math 7